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Identification of soybean circular RNAs in response to low
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Fig 1. Number of significant expressed circular RNAs in
response to different low phosphorus and nitrogen
treatments in soybean roots.
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Fig 2. Expression pattern of circular RNAs in different phosphorus and nitrogen stress treatments (A: phosphorus deficiency, B: nitrogen
deficiency, C: nitrogen and phosphorus deficiency) in the soybean roots in comparison to control treatment. P: phosphorus, N: nitrogen, NP:
nitrogen and phosphorus
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Table 2. key genes in response to low nitrogen and phosphorus stresses in soybean

At : .
) 85 et KW Sos sl s,
R
circ_038 glyma_01g012500 (chrl) 1207065-1207551 Low N Down 0.999
circ_049 glyma_08g204300 (chr8) 16559490-16560020 Low N Up 0.998
circ_276 glyma_20g244900 (chr20) 47545645-47545922 Low N Up 0.998
circ_045 glyma_18g067000 (chr18) 6194357-6195950 Low N Up 0.998
circ_153 glyma_02g119000 (chr2) 11728068-11730835 Low N Up 0.998
circ_229 glyma_07g009600 (chr7) 719350-719872 Low N Up 0.998
circ_286 glyma_07g126400 (chr7) 15081569-15081866 Low N Up 0.998
circ_151 glyma_20g249400 (chr20) 47825332-47825709 Low N Down 0.997
circ_030 glyma_15g084400 (chr15) 6477677-6480049 Low NP Up 1
circ_095 glyma_03g202700 (chr3) 41119531-41119947 Low NP Down 1
circ_141 glyma_12g180600 (chr12) 34109307-34109817 Low NP Up 1
circ_242 glyma_13g276400 (chr13) 37789838-37790458 Low NP Up 1
circ_250 glyma_06g115200 (chr6) 9378826-9379122 Low NP Up 1
circ_339 glyma_11¢232200 (chr11) 32763070-32763486 Low NP Down 1
circ_407 glyma_09g267100 (chr9) 48491515-48492098 Low NP Up 1
circ_093 glyma_20g189500 (chr20) 42809681-42810843 Low NP Up 0.999
circ_091 glyma_09g253700 (chr9) 47339861-47340371 Low P Up 1
circ_110 glyma_15g019300 (chr15) 1491351-1492176 Low P Up 1
circ_310 glyma_18g265200 (chr18) 55005655-55006144 Low P Up 1
circ_031 glyma_19g228600 (chr19) 48001887-48002041 Low P Up 0.999
circ_157 glyma_01g000900 (chrl) 177307-177840 Low P Up 0.999
circ_332 glyma_08g081500 (chr8) 6159215-6159420 Low P Up 0.999
circ_380 glyma_12g228600 (chr12) 38855145-38855610 Low P Up 0.999
circ_447 glyma_09g063200 (chr9) 6057802-6058832 Low P Up 0.999
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Table 3. Functional categories of circular RNA genes in soybean root using AgriGO database.

GO wls 3 Ses ol guail L0 sl P-value
GO0:0005524 ATP binding 68 0.00012
G0:0000166 nucleotide binding 86 0.00018
G0:0030554 adenyl nucleotide binding 76 0.0003
G0:0001883 purine nucleoside binding 76 0.0003
G0:0001882 nucleoside binding 76 0.0003
G0:0003676 nucleic acid binding 66 0.00037
G0:0017076 purine nucleotide binding 79 0.00097
G0:0005488 binding 218 0.0014
G0:0008234 cysteine-type peptidase activity 7 0.0021
G0:0032559 adenyl ribonucleotide binding 68 0.0022
G0:0003774 motor activity 7 0.0052
G0:0016853 isomerase activity 8 0.0054
G0:0032555 purine ribonucleotide binding 71 0.0056
G0:0032553 ribonucleotide binding 71 0.0056
GO0:0003777 microtubule motor activity 6 0.0081
G0:0050662 coenzyme binding 14 0.013
G0:0008194 UDP-glycosyltransferase activity 6 0.016
G0:0016462 pyrophosphatase activity 25 0.016
G0:0008092 cytoskeletal protein binding 7 0.017
G0:0050660 FAD binding 7 0.017

Lsw 5o Gl glacdisg, 4 by e (05 Sl sla jue (g5l 8~ J
Table 4. KEGG pathway enrichment of circRNA genes in soybean
s o o5 olaws P-Value
gmx01200 Carbon metabolism 48 6.04782E-12
gmx01100 Metabolic pathways 177 3.68733E-11
gmx01110 Biosynthesis of secondary metabolites 116 6.97464E-11
gmx01230 Biosynthesis of amino acids 38 1.28731E-08
gmx00010 Glycolysis / Gluconeogenesis 25 6.10491E-07
gmx00710 Carbon fixation in photosynthetic organisms 17 1.14549E-06
gmx00020 Citrate cycle (TCA cycle) 14 7.92802E-06

gmx00620 Pyruvate metabolism 16 0.000190308

gmx01210 2-Oxocarboxylic acid metabolism 11 0.00022403

gmx04141 Protein processing in endoplasmic reticulum 25 0.000278851

gmx00350 Tyrosine metabolism 10 0.000410823

gmx00941 Flavonoid biosynthesis 10 0.00044694

gmx00030 Pentose phosphate pathway 11 0.000993024

gmx02010 ABC transporters 7 0.001795426

gmx03013 RNA transport 18 0.00201432

gmx00360 Phenylalanine metabolism 8 0.00211745

gmx03060 Protein export 9 0.00238657

gmx04626 Plant-pathogen interaction 20 0.002610559

gmx03018 RNA degradation 14 0.002820773

gmx00950 Isoquinoline alkaloid biosynthesis 6 0.003665508

gmx00970 Aminoacyl-tRNA biosynthesis 11 0.004402306

gmx00051 Fructose and mannose metabolism 10 0.007032996

gmx03015 mRNA surveillance pathway 14 0.007087112

gmx00052 Galactose metabolism 9 0.00792265

gmx00640 Propanoate metabolism 6 0.008697459

gmx00510 N-Glycan biosynthesis 7 0.008748851

gmx00250 Alanine, aspartate and glutamate metabolism 8 0.009789797
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Abstract

Soybean, one of the most important sources of edible oil and protein in the world, is
exposed to various environmental biotic and abiotic stresses. These stresses can negatively
impact the quality and quantity of soybean production. This study aimed to identify genes
that express circular RNAs in response to low phosphorus and nitrogen stresses in soybean
roots. Soybean seeds were grown under different low phosphorus and nitrogen treatments,
and sampling was done from the root tissues for total RNA isolation. After measuring the
quality and quantity of the isolated RNA, samples were sequenced using next-generation
sequencing. After obtaining the sequencing data, the quality of RNA-seq data measured,
and then circular RNAs were identified and characterized using five different programs.
Finally, to identify the expression pattern and putative function of circular RNAs,
differential expression analysis and functional analysis of circular RNAs’ parent genes was
done using bioinformatics approaches. RNA-seq experiment produced more than 360
million reads, and in total, 2033 circular RNAs were identified in all treatments. Although
some circular RNAs were co-expressed in two or more treatments, most of the circular
RNAs had a stress-responsive expression. Our results were revealed that circular RNAs
may play their roles by binding to their target molecules. Identified genes can be used in
plant breeding programs for producing tolerant soybean cultivars to low phosphorus and
nitrogen stresses.
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