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Abstract

Since liquid biopsy is less invasive than tissue biopsy, studies on liquid biopsy biomarkers for the early
detection of cancer and diagnosis are taken into consideration. Expression profiles of tumor-educated
platelets (TEP) in liquid biopsy can be used as one of the biomarkers. The use of classification machine
learning models, according to the features space derived from the expression data of TEPs, has given us
the ability to predict cancer. In this study, we evaluate different types of classification models namely
SVM, LDA, logistic regression, boosting, classification tree, and random forest, on the expression profile
of TEPs in 230 patients with breast, liver, colorectal, brain, pancreatic, and lung cancers, as well as the
expression profile of these genes in 55 healthy individuals. These models were examined on the
expression profile of 2000 high variance selected genes. Also, pathway enrichment analysis was
performed on these genes by the GSEA preranked method. The results showed that linear SVM and
polynomial SVM models have lower error rates than two-class models and linear SVM models have
lower error rates than multi-class models. In general, the results of TEP expression profile classification
and pathway enrichment analysis indicate that the expression profile of TEPs can be considered as
candidate biomarkers.

Keywords: Tumor educated platelets, cancer diagnosis and early detection, expression profile classification, machine learning
models, biomarkers
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Figure 1. (A) The bar graph shows the sample frequencies in the GSE68086 data. Overall, 19% of the total data is healthy specimens and
81% of them is cancer specimens. Among the types of cancer samples, breast cancer samples (21%) are the most common and lung cancer
samples (5.2%) are the least common. (B) This figure shows the PCA diagram. The PCA plot displays the distribution of health and cancer
samples in two dimensions with the most variation after selecting the 2000 gene features. The variance in the first dimension is 22.3 %, and

the variance in the second dimension is 12.4 %.
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Figure 2. (A) The accuracy of six two-class classification models acquired by cross-validation of ten replicates is depicted in a box plot.
Linear SVM model with mean ~ 0.95 and median ~ 0.96 shows high-performance results in two-class classification. (B)0 Similar to part A,
the boxplot shows the accuracy of the model, but this plot is drawn for multiclass classification. The OVO linear SVM model performs best
with mean accuracy ~ 0.67 and median ~0.69. (C) Roc curves were used to measure the sensitivity and specificity of the two-class
classification models. The polynomial SVM model with the largest area under the curve provides the best performance. (D) Box plot of AUC
of different two class classification models shows that the polynomial SVM model has the best performance with AUC ~ 0.994.
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Figure 3. In this figure, the results of pathway enrichment analysis by preranked GSEA method are shown. As can be seen, 10 pathways
with adjusted pvalue less than 0.05 were significantly enriched in cancer samples compared to healthy ones. These 10 pathways are various

biological pathways involved in immunological processes.
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Table 1. The classification models used in this research
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