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Abstract

Chickpea (Cicer arietinum) is one of the most important legumes, classified as a cold-sensitive species,
and each year, the sudden drop in temperature leads to a significant loss of chickpea yield. miRNAs are
highly conserved small noncoding RNAs that regulate expression of their target genes by degradation of
their mRNAs or suppressing their translation, and their roles have been proved in cold stress response in
various plants. In the current study, in order to identify cold stress responsive miRNAs in chickpeas,
following transcriptome sequencing of a cold stress tolerant cultivar (Saral) and a cold stress sensitive line
(ILC533) in response to cold stress, the sequences of the cold responsive genes were analyzed by c-mii
software to identify possible miRNAs. Then, the target genes of a number of important miRNAs were
identified using psRNA target software. The results showed that 30 and 20 miRNAs responded to cold
stress in the tolerant and sensitive genotypes, respectively. Through comparative analysis of cold
responsive miRNAs in the contrasting genotypes, miR319, miR393, miR394 and miR159 were
demonstrated as candidate miRNAs involved in cold tolerance and their roles was further inspected. It is

hoped that the obtained results will be useful for development of cold tolerant chickpea cultivars.
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ILC533 under cold stress, up.Sa: miRNAs with significant up-regulation in Saral cultivar under cold stress, dn.Sa: miRNAs with down-
regulation expression in Saral cultivar under cold stress.
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