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Abstract

Drought stress is one of the most important factors limiting production in the agricultural sector. The use
of drought-tolerant alternative plants with high water use efficiency is of great importance. Foxtail millet
(Setaria italica L.) is one of the important drought tolerant fodder and food grains in semi-arid regions. In
this study, drought stress associated QTLs were collected and located on the integrated genetic map of
millet chromosomes. From a total of eight studies, 386 QTLs associated with yield controlling traits
including plant height, water use efficiency, plant biomass, root length and panicle length were collected
in foxtail millet. Under drought stress and normal irrigation conditions, 96 and 287 QTLs were collected
and projected on the reference consensus genetic map, respectively. The meta-analysis of QTLs was
conducted using BioMercator software V4.2. A total of 32 meta-QTLs (MQTLs) were detected on 9
foxtail millet chromosomes with a confidence interval of 3.4 times lower than the average of the original
QTLs. In order to investigate the pattern of gene expression in the MQTL regions, available microarray
and RNA-seq data sets in the databases were analyzed. Based on the achieved results, 95 and 2172
differentially expressed genes at drought conditions were identified in 4 MQTLs with a CI of less than 1
Mbp and in all MQTL regions, respectively. Also, eight key genes were identified by the hub analysis
which belong to transcription factors and regulatory elements. We hope that the results of this study
would be useful for marker assisted selection (MAS) and foxtail millet breeding programs with the aim of
development of new high yielding drought-tolerant genotypes.

Keywords: Setaria italica L., Drought stress, MQTL regions, Differentially expressed genes, Hub
analysis.
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Table 1. Bibliography of QTL studies involved in drought tolerance in foxtail millet used for meta-QTL analysis

Parents of population Population Genotyping Population Projected of Reference
type assay size initial QTLs
1 S.italica cultivar ‘“Yugul/ S. .
viridis accession “W53°’ RIL SSR 190 12 (Qieetal., 2014)
2 S.italica and S. viridis RIL SSR 153 2 g%eltgstian et al,
3 S.viridis accession, A10/ S. italica
accession, B100 RIL SNP 176 41 (Feldman et al., 2018)
4 S, viridis accession, A10/ S. italica (Ellsworth et al.,
accession, B100 RIL SNP 176 19 2020)
5 S. viridis accession, A10/ S. italica (Feldman et al,
accession, B100 RIL SNP 217 2 2017), 2013)
6 S.viridis accession, A10/ S. italica (Mauro-Herrera &
accession, B100 RIL SNP 184 244 Doust, 2016)
7 Longgu7andYugul RIL SNP 164 61 (Liu et al., 2020a)
8 S.viridis (AlO) /S. italica (BlOO) RIL SNP 217 5 (Feldman et al,

2017), (2014)
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Table 2. List of RNA-seq and microarray studies used for identification of the drought-responsive genes in foxtail millet

Reference Type of Parents of population Developmental
analysis stage

(XU etal., 2019) RNAseq S. italica cultivar “Damaomao” and drought-sensitive seedling
“Hongnian”

(Liu et al., 2016) RNAseq siagolb mutant foxtail millet variety Yugul seedling

(Qietal., 2013) RNAseq Foxtail millet seeds of Yugul seedling

(Tang et al., 2017) RNAseq S. italica cultivars ‘Yugul’ (drought-tolerant) and ‘An04’ seedling
(drought-sensitive)

(Shi et al., 2018) RNAseq E1 (maternal line), H1 (paternal line), F1 hybrid M79, a seedling
drought resistant variety and H1 is a drought-tolerant cultivar.

(Yietal., 2015) Microarray  Foxtail millet inbred line Yugul seedling

(Shi et al., 2018) RNAseq Four-leaf-stage foxtail millet seedling
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Table 3. Results of meta-analysis of the QTLs controlling drought tolerance traits in foxtail millet

Left

Right

M_QTL Cl(cM) marker marker Chr QTLS Trait Study

(Ellsworth et al., 2020; Feldman et al., 2017; Mauro-Herrera
1 MQTL7_5 0.39 UGSF779 UGSF778  Chr7 16 B,H,N,T,WS & Doust, 2016)
2 MQTL3_6 0.95 UGSF807 UGSG810 Chr3 11 B,N,T,Y (Doust et al., 2009; Liu et al., 2016)
3 MQTL9_2 1.09 UGSF21 UGSF23  Chr9 28 B,H,N,TWS,Y  (Fuller, 2006; Lata et al., 2010)

(Ellsworth et al., 2020; Mauro-Herrera & Doust, 2016; Qie et
4 MQTL4_1 1.52 UGSF489 UGSF486 Chrl 13 H, T,WS al., 2014)

(Ellsworth et al., 2020; Liu et al., 2016; Mauro-Herrera &
5 MQTL9_1 1.77 UGSF13 UGSF15 Chr9 11 B,H,N,WS,Y Doust, 2016)

(Liu et al., 2016; Mauro-Herrera & Doust, 2016; Qie et al.,
6 MQTL7_2 2.76 UGSF617  UGSF622  Chr7 13 B,T.Y,PLR 2014)
7 MQTL2_1 3.16 UGSF158 UGSF162 Chr2 11 T,WS (Feldman et al., 2018; Mauro-Herrera & Doust, 2016)
8 MQTL9_5 3.33 UGSF125 UGSF128 Chr9 20 B,H,T,WS,R (Feldman et al., 2018; Qie et al., 2014)

(Feldman et al., 2018; Feldman et al., 2017; Mauro-Herrera &
9 MQTL2_7 3.38 UGSF268  UGSF273  Chr2 7 H,N,WS Doust, 2016)
10 MQTL8_1 3.84 UGSF508 UGSF512  Chr8 13 B,H,N,Y (Liu et al., 2016; Mauro-Herrera & Doust, 2016)
11 MQTL2_4 3.92 UGSF242 UGSF243  Chr2 5 B,H,T,WS (Ellsworth et al., 2020; Mauro-Herrera & Doust, 2016)
12 MQTL9 4 42 UGSF81 UGSF96  Chr9 11 B,H,N,T,Y (Liu et al., 2020a; Mauro-Herrera & Doust, 2016)
13 MQTL5_5 422 UGSF371 UGSF376  Chr5 5 H,T,WS (Feldman et al., 2018; Mauro-Herrera & Doust, 2016)

(Feldman et al., 2018; Liu et al., 2020a; Mauro-Herrera &
14 MQTL6_3 4.35 UGSF713 UGSF732  Chr6 8 H,T,WSY Doust, 2016)

(Ellsworth et al., 2020; Feldman et al., 2018; Mauro-Herrera
15 MQTL4_4 442 UGSF947 UGSF957  Chr4 7 T,WS & Doust, 2016)

(Ellsworth et al., 2020; Feldman et al., 2018; Mauro-Herrera
16 MQTL5_2 4.46 UGSF332 UGSF337  Chr5 13 B,HN, T & Doust, 2016; Qie et al., 2014)
17 MQTL2_5 4.63 UGSF246 UGSF250 Chr2 7 B,H,T,WS (Feldman et al., 2018; Mauro-Herrera & Doust, 2016)
18 MQTL3_3 4.64 UGSF781 UGSF882  Chr3 6 B,H,Y Feldman_(2014),Doust_(2016),Ellsworth_(2018),Liu_(2019)

(Feldman et al., 2018; Liu et al., 2020a; Mauro-Herrera &
19 MQTL9_3 4.89 UGSF39 UGSF49  Chr9 8 B,HN,T,Y Doust, 2016)

(Liu et al., 2020a; Mauro-Herrera & Doust, 2016; Qie et al.,
20 MQTL6_1 5.02 UGSF701 UGSF697  Chr6 9 BHY 2014)

(Feldman et al., 2018; Liu et al., 2020a; Mauro-Herrera &
21 MQTL6_2 5.24 UGSF691  UGSF686  Chr6 11 B,HT,Y,WS Doust, 2016)
22 MQTL5_4 5.28 UGSF360  UGSF365 Chr5 6 B,T,WS,R (Ellsworth et al., 2020; Mauro-Herrera & Doust, 2016)

(Ellsworth et al., 2020; Liu et al., 2020a; Mauro-Herrera &
23 MQTL7_4 5.39 UGSF648  UGSF658  Chr7 8 HN,T Doust, 2016)

(Ellsworth et al., 2020; Feldman et al., 2018; Mauro-Herrera
24 MQTL5_3 5.85 UGSF354 UGSF359  Chrb 8 B,N,T,WS & Doust, 2016)

(Ellsworth et al., 2020; Feldman et al., 2018; Liu et al., 2016;
25 MQTL3_4 6.12 UGSF866  UGSF858  Chr3 5 HWS)Y Mauro-Herrera & Doust, 2016)

(Feldman et al., 2018; Feldman et al., 2017; Mauro-Herrera &
26 MQTL4_2 6.31 UGSF895  UGSF898 Chr4 7 H,T,WS Doust, 2016)

(Feldman et al., 2018; Liu et al., 2020a; Mauro-Herrera &
27 MQTL2_2 6.34 UGSF187 UGSF211 Chr2 5 HTY Doust, 2016)

(Ellsworth et al., 2020; Liu et al., 2020a; Mauro-Herrera &
28 MQTL7_3 6.6 UGSF626 ~ UGSF632  Chr7 9 B,H,T,WS Doust, 2016)
29 MQTL4_3 6.8 UGSF905  UGSF924 Chr4 3 N,T,WS (Ellsworth et al., 2020; Mauro-Herrera & Doust, 2016)
30 MQTL3 5 9.57 UGSF1008 UGSF801 Chr3 3 B,Y (Liu et al., 2020b; Mauro-Herrera & Doust, 2016)
31 MQTL4 5 10.33 UGSF981 UGSF987 Chr4 3 H,N,Y (Liu et al., 2020b; Mauro-Herrera & Doust, 2016)
32 MQTL1 3 11.57 UGSF433 UGSF467 Chrl 11 B,H,T (Liu et al., 2020b; Mauro-Herrera & Doust, 2016)
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Figure 4. Venn diagram of differentially expressed genes (DEGs) derived from RNA-seq and microarray data compared to (a) the genes
located in 4AMQTLSs regions with CI of less than 1Mb (b) all MQTLS regions
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Table 4. List of hub genes identified in the network of drought responsive genes located in MQTL regions at Setaria italica.

MQTL  Algorithm cellu!ar Functional category Gene name Setaria ensemble
location of the gene ID
MQTL7_5 closeness chloroplast metal ion binding probable lipoxygenase 6 LOC101783519 1
MQTL7_5 closeness chloroplast regulation of histone deacetylase 14 LOC101766996 2
photosynthesis

MQTL7_5 closeness cytoskeleton ATP binding actin-7-like LOC101779009
MQTL7_5 closeness Cytosol RNA binding 60S ribosomal protein L3 LOC101769426 4
MQTL7_5 Degree Nucleus translation ubiquitin-40S ribosomal protein ~ LOC101764267 5

MQTL7_5 Degree Mitochondrion

MQTL7_5 Degree Cytosol

MQTL7_5 Degree Nucleus

Oxidoreductase

translation

Transcription
regulation

S27a-2
2-oxoisovalerate dehydrogenase
subunit alpha 2, mitochondrial
60S ribosomal protein L3

LOC101765211 6

LOC101769426 7

transcription factor E2FA LOC101754019 8
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