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Abstract

Salt stress is one of the important environmental factors that adversely affects plant growth and yield.
Identification of key components involved in the stress response networks is the important task in
development of tolerant varieties through genetic engineering and molecular breeding programs. Here, we
have performed comprehensive bioinformatics analysis to identify conserved genes and mechanisms
involving in salt stress response across monocots, wheat and barley and dicot Arabidopsis. The
microarray data were retrieved from GEO dataset at NCBI, which were already generated through
experiments on the leaves of mentioned species under various stress conditions. Arabidopsis orthologues
of salt responsive genes from wheat and barley were recognized by performing BLASTx compared with
Arabidopsis protein database. We identified 208, 1336, and 4527 salt responsive genes from barley,
wheat, and Arabidopsis, respectively, where 25 genes were common and considered as conserved salt
responsive genes among species. The conserved genes are involved in stress signaling, ion homeostasis of
ions, reactive oxygen species homeostasis, and energy, osmoprotectant mechanisms, and cell wall
lignification pathways by exposing to salt stress in the three species. The theoretical gene co-expression
network during signaling pathway was also presented in the salt stress condition.
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Table 1. Characteristics of the utilized microarray data

GO ld Plant species Growth Tissue Time point Response to No of
stage salinity evaluated
genes
200003097 Horedeum Seedling leaf 3, 8 and 27 29840
vulgare hrs
200005605 Horedeum Seedling leaf 14 days 22840
vulgare
200008060 Triticum Seedling leaf 1, 6 and 24 22574
aestivum hrs
200008064 Triticum Seedling leaf 1, 6 and 24 10807
aestivum hrs
200005623 Arabidopsis Seedling leaf 1, 3, 6, 12 22810
thaliana and 24 hrs
Sl Cessdee dlasl 5 bl Jdos 5 4 plsdl 51 e Cou 5 s

53 e Yore YAy sl oo 6l o BBl Glod e
05 VEY 5 OTY OEY (o4 cele TV 5 A Y Glaob;

\FY olz.wgl.’i 9 ke /) o los /,,bo,'l,a 099 /w) 6‘“‘ 9 S (W0



http://www.shigen.nig.ac.jp/wheat/komugi/array/probe/download.jsp
http://www.shigen.nig.ac.jp/wheat/komugi/array/probe/download.jsp
http://www.affymetrix.com/support/technical/byproduct.affx?product=barley1
http://www.affymetrix.com/support/technical/byproduct.affx?product=barley1
http://www.affymetrix.com/support/technical/byproduct.affx?product=barley1
http://www.affymetrix.com/support/technical/byproduct.affx?product=barley1
https://dor.isc.ac/dor/20.1001.1.25885073.1402.12.1.3.7
http://gebsj.ir/article-1-444-fa.html

[ Downloaded from gebg.ir on 2026-01-29 ]

[ DOR: 20.1001.1.25885073.1402.12.1.3.7 ]

g 3 0L (,.uf Ol ss cbl- sbis sl

0L 5 (galslas

Sl 5 558 de A0S mead Sl G S A8 gLl 31
R nMJ.chg: 05 80TV (o, ST slads

2 Jets edd CBlis Gl sle 5 oS e sk 4
Saged s b candllas 350 655 ww 53 (g8 A5 4 el
WY e o g.m;éwa O5 YA w55 S s sy Venn
MJJ&UI Y o.\;.:a;'cwl.i Q5 80TV r.x.;f 3 bM}é.wLi 05

O S8 A s 5

sdadialy Synlie 05 W el oo 5 VNN Gl sl el
s elS 53 3 ediangal S 2ie 05 W G 5 p S LS 55 5o
5 S LS 55 53 sdaspaly S 2ie 05 AN 5 e skl
G ey oS 458 A w53 LS plelid e sl
3 plie oo Lgupd 4 edias gl S zie 05 YO

Soxh 5 4 Sl odd SBlis gla03 Oy g alis
033L 53 48 303 OLaS e syl 5 s 0L P £58 w3
Su90 655 dw o Slo ok, OMel (V) 05 YE Sl 5,
5 ATAG35090 (slagss aSIl> s Je (gl 305 342y oow 2
SalS s (Gsd S Cow e sdolyl s AT5GA8485
2 05 ol SHS 0k SRl Sl 25 ol s S 0Ly
SRS e s S pemes A3 S s O paS
23S 5 eesdal] s AT3G12120 0 Oly law

(Y JS8) @b il pS 55 0 Ols oS J-

Spme S QLS Aol 5o oty Saie b0 s
3 S by So3edd CBlis gla s 3525 SLS ol
A ads gl o Shes GlaslS 5 sl s 5 el JWE)
o ple JEEl 5 S5 e 3 (St Chlis il o S e
Balderas-) <ol oii cdalie Al Cilee s 4
sesar 53 SWllks cexes . (Hernandez, et al. 2013
Sl 55 4 Sl ol cbli= o5 Shes gbs 0F pluls
OLLS 5o (LS 5 oo ((Saot ((5)38) () b s
Joie oS Oy 4 g olS (sls e3ls 51 S el e ol

(Balti, et al. 2020) ol sl oslaal (6558 25 @

Jlasl 555 V8 51 g Frvev 0 asls (5 é‘ﬂ)&)&.&.}'cwlg:
Ao gl ghsd S aM:'ché 05 YA0 (o 9h S5
& adaspal SL03 mm sl Sl s )
3030 G 55 pla b GAOS e 5 s 5 s
03 YPA (IS5 slads Gl 5 (S e e Cilie sla0le
s ekspal il Sl Olse 4 st
j&wjg)qar@\jlm}grﬁeljp.xm&bu
O ol 55 Yrr v v AT sy (6 6l o gl Jlasd
YOr VYT A0 (5 o5 Jlesl 3l e el YE 5
T Sladles 3 Yer s AVTE ool (5 (sl 5 edinz il O
wlels 3151050871 5V WoE L5 & el YE
et 3dell S Y505l e 3 58 S oS >l
dise adles 5 esls (6w 53 A0S e 5 )5S e S0
& eyl O3V (ol ST sla0 Bl 5 (5 S 50
wlelid p S 55 ()58 b zaly GLO) S5l Ol

R

Wheat_r Barley

Arabidopsis

03 Gosh 5 4 edias Cwli slaoj @um_.bﬁfVenn Jls el =Y JS.‘;
A‘.’.')T}:"J 6[.&:)‘) WL“J’!MJ%‘.UT}J? cr.Lf 45;4..»

Fig 1. Venn diagram of the salt responsive genes from
bread wheat, barley and Arabidopsis based on microarray
data
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Table 2. Common salt-responsive genes in bread wheat, barley and Arabidopsis based on microarray data
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Row  Accessionld  Gene name Protein name Homology percent to Homology
no. barley percent to bread
wheat

1 AT1G07750  AT1GO07750 RmIC-like cupins superfamily protein 70.37 70.95

2 AT1G55020 LOX1 Linoleate 9S-lipoxygenase 1 59.11 59.11

3 AT1G55120 CWINV3 Beta-fructofuranosidase, insoluble isoenzyme CWINV3 53.12 52.41

4 AT2G02990  RNS1 Ribonuclease 1 60.82 60.82

5 AT2G34850  At2g34850 Putative UDP-arabinose 4-epimerase 2 83.48 83.48

6 AT2G39800 P5CSA Delta-1-pyrroline-5-carboxylate synthase A 73.04 72.91

7 AT3G12120 FAD2 Delta(12)-fatty-acid desaturase 67.69 67.69

8 AT3G18000 NMT1 Phosphoethanolamine N-methyltransferase 1 71.01 71.01

9 AT3G20810 JMJ30 Lysine-specific demethylase JIMJ30 57.87 61.17

10 AT3G22370  AOX1A Ubiquinol oxidase 1a, mitochondrial 83.73 83.33

11 AT3G29575  AFP3 Ninja-family protein AFP3 79.45 79.45

12 AT3G48850 MPT2 Mitochondrial phosphate carrier protein 2, mitochondrial 61.41 61.41

13 AT3G52150  PSRP2 30S ribosomal protein 2, chloroplastic 63.83 64.89

14 AT3G53980  F5K20_280 lipid-transfer protein 50.66 50.22

15 AT4G20860 FAD-OXR Berberine bridge enzyme-like 22 48.78 47.38

16 AT4G27710  CYP709B3 Cytochrome P450 709B3 61.98 61.46

17 AT4G29820 CFIS1 Pre-mRNA cleavage factor Im 25 kDa subunit 1 75.07 7451

18 AT4G34230 CADS5S Cinnamyl alcohol dehydrogenase 5 82.93 83.54

19 AT4G35090 CAT2 Catalase-2 54.46 55.88

20 ATAG37220  At4g37220 Cold-regulated 413 plasma membrane protein 4 36.7 37.61

21 AT5G13220  TIFY9 Protein TIFY 9 71.97 63.7

22 AT5G17230  PSY1 Phytoene synthase, chloroplastic 35.1 34.81

23 AT5G23960  TPS21 Alpha-humulene/(-)-(E)-beta-caryophyllene synthase 44 43.42

24 AT5G48485 DIR1 Putative lipid-transfer protein DIR1 48.18 47.27

25 AT5G59310 LTP4 Non-specific lipid-transfer protein 4 70.37 70.95
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