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Abstract

Bacteriophage infections are one of the key challenges in the use of various bacteria in industries.
CRISPR-Cas systems are part of the bacterial immune system against viral infections and determining the
characteristics of these systems can be beneficial for the formulation and use of these bacteria. To
investigate the CRISPR/Cas system in the Leuconostoc genus, the complete genome sequences of 18
reported species of this genus were explored and their CRISPR/Cas system information was analyzed
using homology-based algorithms. Then, the characteristics of the conformational structure and stability
of recognized systems were determined based on MFE values, phage recognition sites were identified
using BLAST approaches, and the evolutionary relationships of these systems were analyzed based on
amino acid sequence of associated proteins. Based on the obtained results, 9 of 18 reported species for
this genus contain whole CRISPR/Cas system. CRISPR/Cas type analysis confirmed that except for one
case, all strains contained the type II-A system. In these systems, the number of repeats and average
length of spacers varied from 4 to 101 and 28 to 30 nucleotides, respectively. Nine types of PAM
sequences were identified at the 3" and 5 ends of these systems. Based on relationship analysis, the
studied system was divided into two main groups. Subtype 1I-A appears to be the most active system
against foreign DNA and phages in the Leuconostoc genus.

Key words: Leuconostoc, CRISPR, Diversity, Relationship, Structure.
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Table 1. Complete CRISPR/Cas systems in Leuconostoc specious and strains.

Species strains CRISPR/Cas type Type Direction ~ Cas Gene Number  Repeat Number  Spacer
L. inhae DSM 15101 Complete 1I-A Positive 4 9 S1-S8

L. gelidum subsp. A214 Complete 1I-A Positive 4 13
Gasicomitatum S1-S12
L. mesenteroides DPC 7261 Complete 1I-A Negative 5 8 S1-S7
L. mesenteroides DPC 7261 (1) Complete 1-A Negative 4 8 S1-§7
L. rapi DSM 27776 Complete 1I-A Positive 6 42 S1-s41
DSM 27776 contig4(2) Complete 1I-A Negative 5 42 S1-s41
L. falkenberg C Complete 1I-A Negative 5 7 S1-S6
LMG 10779 Complete 1I-A Positive 5 5 S1-S4
L. carnosum WC0324 Complete 1I-A Positive 5 12 S1-S11
WC0319 Complete 1I-A Negative 5 17 S1-S16
L. lactis BIOML-A1 Complete 1-A Positive 4 101 $1-s100
aa_0143 Complete 1I-A Negative 4 99 $1-s98
CCK940 Complete 1I-A Negative 4 22 s1-s21
KACC 91922 Complete 1I-A Positive 5 20 s1-s19
MSK.22.137 Complete 1I-A Negative 4 7 s1-s6
MSK.22.141 Complete 1I-A Negative 4 7 s1-s6
UBA5566 Complete 1I-A Positive 6 4 S1-S4
SBCO001 Complete 1I-A Positive 4 26 s1-s25
L. gelidum C220d Complete 1I-A Negative 4 33 S1-S23
AMKR21 Complete 1I-A Negative 5 49 S1-548
DSM 19375 contigl Complete 1-A Negative 4 21 S3-S22
Ebr1-8 Complete 1I-A Positive 4 27 S1-S26
HS9 Complete 1-A Negative 5 61 51-s60
JB7 Complete 1-A Negative 5 41 S1-S40
JPBL22 Complete 1-A Positive 5 66 S1-S65
KAPA3-9 Complete 1I-A Negative 5 36 S1-S35
KCTC 3527 Complete 1I-A Positive 4 30 S1-S29
kgl-2 Complete 1-A Negative 5 48 S1-S47
LS4 Complete 1I-A Positive 5 48 S1-547
NBRC 113246 Complete 1-A Positive 4 30 S1-S29
PB4d Complete 1-A Positive 4 22 s1-s21
PLK1c Complete 1I-A Negative 5 62 s1-s61
POKY4-4 Complete 1I-A Positive 5 56 S1-S55
TMW 2.1618 Complete 1-A Positive 5 13 S1-S13
L.pseudomesenteroides 1159 Complete 1-A Positive 7 7 S1-S6
4882 Complete 1I-A Negative 5 7 S1-S6
LMGH278 Complete 1I-A Negative 5 6 S1-S5
AMBR10 Complete 1-A Negative 4 6 S1-S5
BM2 Complete 1-A Negative 5 8 S1-S7
FDAARGOS_1004 Complete 1I-A Negative 5 7 S1-S6
HPKO01 Complete 1-A Positive 5 6 S1-S5
LMGCF06 Complete 1-A Positive 5 6 S1-S5
LMGCF08 Complete 1I-A Positive 5 6 S1-S5
LMGCF15 Complete 1-A Positive 5 6 S1-S5
LMGH®61 Complete 1I-A Negative 5 6 S1-S5
LMGH83 Complete 11-C Negative 5 6 S1-S5
LMGH97 Complete 1I-A Negative 5 7 S1-S6
LMGTW1 Complete 1-A Negative 5 7 S1-S6
LMGTW3 Complete 1I-A Positive 5 4 S1-S3
LMGTW6 Complete 1I-A Positive 5 4 S1-S3
LMGTW8 Complete 1I-A Positive 5 7 S1-S6
LNO02 Complete 1-A Positive 5 4 S1-S3
LN12 Complete 1I-A Positive 5 5 S1-S4
MGBC116435 Complete 1-A Negative 4 10 S1-S9
pPS12 Complete 1I-A Positive 5 8 S1-S7
UBA11295 Complete 1I-A Negative 7 7 S1-S6
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