[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
::
::
شماره‌های چاپ شده

فایل لیست داوران مقالات 

دوره سیزدهم سال 1403
شماره اول
شماره دوم

دوره دوازدهم سال 1402
شماره اول
شماره دوم

دوره یازدهم سال 1401
شماره اول
شماره دوم
دوره دهم سال 1400
شماره اول
شماره دوم
دوره نهم سال 1399
شماره اول
شماره دوم
دوره هشتم سال 1398
شماره اول
شماره دوم

دوره هفتم سال 1397
دوره ششم سال 1396
دوره پنجم سال 1395
دوره چهارم سال 1394
دوره سوم سال 1393
دوره دوم سال 1392
دوره اول سال 1391
..
راهنمای نگارش
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 12، شماره 2 - ( 9-1402 ) ::
جلد 12 شماره 2 صفحات 240-226 برگشت به فهرست نسخه ها
توسعه نشانگرهای مولکولی EST-SSR مرتبط با مسیرهای متابولیکی در گیاه کرفس کوهی
مریم رمضانی ، فرهاد نظریان فیروزآبادی* ، احمد اسماعیلی ، سید سجاد سهرابی
گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران ، nazarian.f@lu.ac.ir
چکیده:   (1082 مشاهده)
کرفس کوهی (Kelussia odoratissima Mozaff) یکی از مهم‌ترین گیاهان دارویی و در معرض انقراض ایران است. کرفس کوهی نه‌تنها به‌عنوان یک سبزی ارزشمند به‌صورت خام مورد استفاده قرار می‌گیرد، بلکه دارای خواص درمانی بسیاری هم در طب سنتی و هم در ترکیبات داروهای گیاهی مدرن از منظر فارماکولوژیکی است. فقدان اطلاعات تنوع ژنتیکی و همچنین عدم شناخت ساز‌وکار تولید متابولیت‌های مهم در این گیاه، تحقیقات ژنتیکی پیرامون این گیاه را با چالش مواجهه کرده است. در پژوهش حاضر، با هدف توسعه نشانگر­های EST-SSR در مقیاس بالا، از فرآیند سرهم­بندی نوپدید خوانش­های کوتاه حاصل از فناوری توالی­یابی نسل جدید استفاده شد. تعداد 7575 مکان ریزماهواره در 6388 یونی­ژن در ترنسکریپتوم کرفس کوهی شناسایی شد. در میان این نشانگرها، موتیف­های دو نوکلئوتیدی و پس از آن تک و سه نوکلئوتیدی بالاترین فراوانی را نشان دادند. نتایج بلاست رونوشت‌های حاوی ریزماهواره نشان داد که 74/79 درصد از رونوشت­ها دارای حداقل یک رکورد در پایگاه پروتئین‌های غیرتکراری بودند. جستجوی عوامل رونویسی، تفسیر کارکردی و همچنین مستندسازی رونوشت­ها در برابر پایگاه KEGG، اکثر یونی­ژن­های حاوی ریزماهواره را در مسیر­های متابولیکی و بیوسنتز متابولیت‌های ثانویه دخیل دانست. نتایج حاصل نشان داد که این نشانگرها به تحلیل تنوع ژنتیکی و مسیرهای متابولیکی این گیاه کمک می‌کنند، اطلاعاتی که می‌تواند در حفظ و بهره‌برداری پایدار از این گیاه با اهمیت تلقی شوند.
واژه‌های کلیدی: تفسیر کارکردی، تنوع ژنتیکی، کرفس کوهی، نسل جدید توالی یابی، نشانگر مولکولی
متن کامل [PDF 1662 kb]   (255 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصی متفرقه
دریافت: 1402/5/16 | پذیرش: 1402/6/24 | انتشار: 1402/12/24
فهرست منابع
1. Ahmadi, F., Kadivar, M., & Shahedi, M. (2007). Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chemistry, 105(1), 57-64. Doi: 10.1016/j.foodchem.2007.03.056 [DOI:10.1016/j.foodchem.2007.03.056]
2. Ahmadi, K., Omidi, H., Amini Dehaghi, M., & Naghdi Badi, H. (2019). A Review on the Botanical, Phytochemical and Pharmacological Characteristics of Kelussia odoratissima Mozaff. Journal of Medical Internet Research, 18(72), 30-45 (In Persian). Doi: 10.29252/jmp.4.72.S12.30 [DOI:10.29252/jmp.4.72.S12.30]
3. Ahmadi, K., Omidi, H., Amini Dehaghi, M., & Soltani, E. (2021). Evaluation of dormancy breaking treatments on seed germination and soluble compounds of Kelussia odoratissma Mozaff. seedling. Plant Physiology Reports, 26(3), 513-525. Doi: 10.1007/s40502-021-00594-0 [DOI:10.1007/s40502-021-00594-0]
4. Akbarian, A., Rahimmalek, M., Sabzalian, M. R., & Sarfaraz, D. (2019). Variation in essential oil composition, phenolic, flavonoid and antioxidant activity of Kelussia odoratissima Mozaff based on three model systems. Journal of Applied Research on Medicinal and Aromatic Plants, 13, 100208. Doi: 10.1016/j.jarmap.2019.100208 [DOI:10.1016/j.jarmap.2019.100208]
5. Akkafi, H. R., Valivand, M., & Jenabi, T. (2014). Autecological, palynological and karyological characterization of Kelussia odoratissima Mozaff. (A case study in Dare Sepestan region from Fereydoon shahr in Isfahan province). Iranian Journal of Plant Biology, 6(19), 125-140 (In Persian). https://dorl.net/dor/20.1001.1.20088264.1393.6.19.10.1
6. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. http://doi.org/10.1093/nar/25.17.3389 [DOI:10.1093/nar/25.17.3389]
7. Ashengroph, M., & Nahvi, I. (2014). Biological Production of Natural Vanillin Based on the Microbial Conversion of Phenylpropanoids. Cellular and Molecular Research (Iranian Journal of Biology), 27(3), 316-334 (In Persian). https://dorl.net/dor/20.1001.1.23832738.1393.27.3.1.3
8. Chang, S., Li, Q., Huang, B., Chen, W., & Tan, H. (2023). Genome-wide identification and characterisation of bHLH transcription factors in Artemisia annua. BMC Plant Biology, 23(1), 63. Doi: 10.1186/s12870-023-04063-8 [DOI:10.1186/s12870-023-04063-8]
9. Chen, J., Li, R., Xia, Y., Bai, G., Guo, P., Wang, Z., Zhang, H., & Siddique, K. H. (2017). Development of EST-SSR markers in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) based on de novo transcriptomic assemblies. PloS One, 12(9), e0184736. Doi: 10.1371/journal.pone.0184736 [DOI:10.1371/journal.pone.0184736]
10. Czerniawski, P., & Bednarek, P. (2018). Glutathione S-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants. Frontiers in Plant Science, 9. Doi: 10.3389/fpls.2018.01639 [DOI:10.3389/fpls.2018.01639]
11. Dai, Y., Su, W., Yang, C., Song, B., Li, Y., & Fu, Y. (2017). Development of Novel Polymorphic EST-SSR Markers in Bailinggu (Pleurotus tuoliensis) for Crossbreeding. Genes (Basel), 8(11). Doi: 10.3390/genes8110325 [DOI:10.3390/genes8110325]
12. Di, P., Wang, P., Yan, M., Han, P., Huang, X., Yin, L., Yan, Y., Xu, Y., & Wang, Y. (2021). Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng. BMC Genomics, 22(1), 834. Doi: 10.1186/s12864-021-08145-5 [DOI:10.1186/s12864-021-08145-5]
13. Dixon, D. P., Skipsey, M., & Edwards, R. (2010). Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 71(4), 338-350. Doi: 10.1016/j.phytochem.2009.12.012 [DOI:10.1016/j.phytochem.2009.12.012]
14. Durand, J., Bodénès, C., Chancerel, E., Frigerio, J.M., Vendramin, G., Sebastiani, F., Buonamici, A., Gailing, O., Koelewijn, H.P., Villani, F. & Mattioni, C. (2010). A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics, 11(1), 570. Doi: 10.1186/1471-2164-11-570 [DOI:10.1186/1471-2164-11-570]
15. Dutta, H., Mishra, G. P., Aski, M. S., Bosamia, T. C., Mishra, D. C., Bhati, J., Sinha, S. K., Vijay, D., C. T, M. P., Das, S., Pawar, P. A. M., Kumar, A., Tripathi, K., Kumar, R. R., Yadava, D. K., Kumar, S., & Dikshit, H. K. (2022). Comparative transcriptome analysis, unfolding the pathways regulating the seed-size trait in cultivated lentil (Lens culinaris Medik.). Frontiers in Genetics, 13, 942079. Doi: 10.3389/fgene.2022.942079 [DOI:10.3389/fgene.2022.942079]
16. Fernandes, L. M. P., Bezerra, F. R., Monteiro, M. C., Silva, M. L., de Oliveira, F. R., Lima, R. R., Fontes-Júnior, E. A., & Maia, C. S. F. (2017). Thiamine deficiency, oxidative metabolic pathways and ethanol-induced neurotoxicity: how poor nutrition contributes to the alcoholic syndrome, as Marchiafava-Bignami disease. European Journal of Clinical Nutrition, 71(5), 580-586. Doi: 10.1038/ejcn.2016.267 [DOI:10.1038/ejcn.2016.267]
17. Gostimsky, S. A., Kokaeva, Z. G., & Konovalov, F. A. (2005). Studying plant genome variation using molecular markers. Genetika, 41(4), 480-492. Doi: 10.1007%2Fs11177-005-0101-1
18. Grandi, E., Crotti, M., Sigmund, M. C., Xu, G., Tepper, P. G., & Poelarends, G. J. (2023). Biocatalytic Cascade Synthesis of Enantioenriched Epoxides and Triols from Biomass‐Derived Synthons Driven by Specifically Designed Enzymes. Chemistry-A European Journal, 29(31), e202300697. Doi: 10.1002/chem.20230069 [DOI:10.1002/chem.202300697]
19. Guo, A. Y., Chen, X., Gao, G., Zhang, H., Zhu, Q. H., Liu, X. C., Zhong, Y. F., Gu, X., He, K., & Luo, J. (2007). PlantTFDB: a comprehensive plant transcription factor database. Nucleic Acids Research, 36(1), D966-D969. Doi: 10.1093/nar/gkm841 [DOI:10.1093/nar/gkm841]
20. Gupta, D. S., Cheng, P., Sablok, G., Thavarajah, P., Coyne, C. J., Kumar, S., Baum, M., & McGee, R. J. (2016). Development of a panel of unigene-derived polymorphic EST-SSR markers in lentil using public database information. The Crop Journal, 4(5), 425-433. Doi: 10.1016/j.cj.2016.06.012 [DOI:10.1016/j.cj.2016.06.012]
21. Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 19(1), 128. Doi: 10.1186/s43141-021-00231-1 [DOI:10.1186/s43141-021-00231-1]
22. Javani, R., & Asadi-Gharneh, H. A. (2020). Mineral composition in populations of Iranian wild celery. International Journal of Vegetable Science, 26(1), 55-61. Doi: 10.1080/19315260.2019.1604603 [DOI:10.1080/19315260.2019.1604603]
23. Kaur, S., Cogan, N. O., Pembleton, L. W., Shinozuka, M., Savin, K. W., Materne, M., & Forster, J. W. (2011). Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics, 12, 1-11. Doi: 10.1186/1471-2164-12-265. [DOI:10.1186/1471-2164-12-265]
24. Khadijeh, A., Heshmat, O., Majid, A. D., & Hasanali, N. B. (2020). A review on the botanical, phytochemical and pharmacological characteristics of Kelussia odoratissima mozaff. Journal of Medicinal Plants, 18(72), 30-45 (In Persian). Doi: 10.29252/jmp.4.72.S12.30 [DOI:10.29252/jmp.4.72.S12.30]
25. Khanavi, M., Ghadami, S., Sadaghiani-Tabrizi, G., & Delnavazi, M. R. (2021). Phytochemical constituents of the fruits of Kelussia odoratissima Mozaff., an aromatic plant endemic to Iran. Journal of Medicinal Plants, 20(79), 1-13. https://dorl.net/dor/20.1001.1.2717204.2021.20.79.1.6 [DOI:10.52547/jmp.20.79.1]
26. Kuang, X., Du, J. R., Liu, Y. X., Zhang, G. Y., & Peng, H. Y. (2008). Postischemic administration of Z-Ligustilide ameliorates cognitive dysfunction and brain damage induced by permanent forebrain ischemia in rats. Pharmacology Biochemistry and Behavior, 88(3), 213-221. Doi: 10.1016/j.pbb.2007.08.006 [DOI:10.1016/j.pbb.2007.08.006]
27. Li, D., Deng, Z., Qin, B., Liu, X., & Men, Z. (2012). De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC genomics, 13, 1-14. Doi: 10.1186/1471-2164-13-192. [DOI:10.1186/1471-2164-13-192]
28. Majdi, M., Karimzadeh, G., & Malboobi, M. (2014). Spatial and developmental expression of key genes of terpene biosynthesis in Tanacetum parthenium. Biologia plantarum, 58(2), 379-384. Doi: 10.1007/s10535-014-0398-5 [DOI:10.1007/s10535-014-0398-5]
29. Mercati, F., Fontana, I., Gristina, A. S., Martorana, A., El Nagar, M., De Michele, R., Fici, S., & Carimi, F. (2019). Transcriptome analysis and codominant markers development in caper, a drought tolerant orphan crop with medicinal value. Scientific Reports, 9(1), 10411. Doi: 10.1038/s41598-019-46613-x [DOI:10.1038/s41598-019-46613-x]
30. Mezgebu Legesse, H., & Etsegenet Assefa, B. (2020). Biological Application and Disease of Oxidoreductase Enzymes. In M. Mahmoud Ahmed (Ed.), Oxidoreductase (pp. Ch. 1). IntechOpen. Doi: 10.5772/intechopen.93328 [DOI:10.5772/intechopen.93328]
31. Mirzaei, F., Norouzi, R., Siyadatpanah, A., Mitsuwan, W., Nilforoushzadeh, M., Maleksabet, A., Hosseini, M., de Lourdes Pereira, M., Nissapatorn, V., & Hejazi, S. H. (2020). Butanol Fraction of Kelussia odoratissima Mozaff Inhibits the Growth of Leishmania major Promastigote and Amastigote. World's Veterinary Journal, 10(2), 254-259. Doi: 10.36380/scil.2020.wvj33 [DOI:10.36380/scil.2020.wvj33]
32. Niksiar, P., Navvabpour, S., Sabouri, H., Soltanlu, H. & Rahimi, M. (2018). Haplotype Diversity For QTL Associated with Drought tolerance on Chromosome 2 of Rice. Genetic Engineering and Biosafety Journal 7(2): 217-230 (In Persian). http://dorl.net/dor/20.1001.1.25885073.1397.7.2.12.3
33. Patra, B., Schluttenhofer, C., Wu, Y., Pattanaik, S., & Yuan, L. (2013). Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1829(11), 12361247. Doi: 10.1016/j.bbagrm.2013.09.006 [DOI:10.1016/j.bbagrm.2013.09.006]
34. Paul, P. E. V., Sangeetha, V., & Deepika, R. G. (2019). Chapter 9 - Emerging Trends in the Industrial Production of Chemical Products by Microorganisms. In V. Buddolla (Ed.), Recent Developments in Applied Microbiology and Biochemistry (pp. 107-125). Academic Press. Doi: 10.1016/B978-0-12-816328-3.00009-X [DOI:10.1016/B978-0-12-816328-3.00009-X]
35. Peng, J., Shi, C., Wang, D., Li, S., Zhao, X., Duan, A., Cai, N., & He, C. (2021). Genetic diversity and population structure of the medicinal plant Docynia delavayi (Franch.) Schneid revealed by transcriptome-based SSR markers. Journal of Applied Research on Medicinal and Aromatic Plants, 21, 100294. Doi: 10.1016/j.jarmap.2021.100294 [DOI:10.1016/j.jarmap.2021.100294]
36. Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1(7), 215-222. Doi: 10.1016/1360-1385(96)86898-1 [DOI:10.1016/1360-1385(96)86898-1]
37. Ren, Q., Liu, X. Q., Zhou, X. W., Zhou, X., Fang, G., Wang, B., Wang, Y. P., Peng, D. H., & Li, X. T. (2021). Effects of Huatan Jiangzhuo decoction on diet-induced hyperlipidemia and gene expressions in rats. Chinese Journal of Natural Medicines, 19(2), 100-111. Doi: 10.1016/S1875-5364(21)60011-0 [DOI:10.1016/S1875-5364(21)60011-0]
38. Saina, J. K., Li, Z. Z., Mekbib, Y., Gichira, A. W., & Liao, Y. Y. (2021). Transcriptome sequencing and microsatellite marker discovery in Ailanthus altissima (Mill.) Swingle (Simaroubaceae). Molecular Biology Reports, 48(3), 2007-2023. Doi: 10.1007/s11033-020-05402-w [DOI:10.1007/s11033-020-05402-w]
39. Samandari-Bahraseman, M. R., Ismaili, A., Esmaeili-Mahan, S., Ebrahimie, E., & Loit, E. (2022). Investigation of Persian black cumin (Bunium persicum Boiss.) transcriptome in the granulation stage and identification of genomic microsatellites in this plant. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 30(1), 1-15. Doi: 10.22092/ijrfpbgr.2022.356585.1396
40. Schluttenhofer, C., & Yuan, L. (2017). Challenges towards Revitalizing Hemp: A Multifaceted Crop. Trends in Plant Science, 22(11), 917-929. Doi: 10.1016/j.tplants.2017.08.004 [DOI:10.1016/j.tplants.2017.08.004]
41. Shen, W., Li, H., Teng, R., Wang, Y., Wang, W., & Zhuang, J. (2019). Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics, 111(5), 1142-1151. Doi: 10.1016/j.ygeno.2018.07.009. [DOI:10.1016/j.ygeno.2018.07.009]
42. Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly, S. (2016). TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Research, 26(8), 1134-1144. Doi: 10.1101/gr.196469.115 [DOI:10.1101/gr.196469.115]
43. Sohrabi, S. S., Ismaili, A., Azarian Firouz-Abadi, F. N., & Fallahi, H. (2018). Discovery of EST-SSRs markers in lentil (Lens culinaris) under cold stress. Crop Biotechnology, 8(22), 1-14 (In Persian). https://dorl.net/dor/20.1001.1.22520783.1397.8.22.1.5
44. Song, Z. H., Ji, Z. N., Lo, C. K., Dong, T. T., Zhao, K. J., Li, O. T., Haines, C. J., Kung, S. D., & Tsim, K. W. (2004). Chemical and biological assessment of a traditional chinese herbal decoction prepared from Radix Astragali and Radix Angelicae Sinensis: orthogonal array design to optimize the extraction of chemical constituents. Planta Med, 70(12), 1222-1227. Doi: 10.1055/s-2004-835855 [DOI:10.1055/s-2004-835855]
45. Sudheesh, S., Verma, P., Forster, J. W., Cogan, N. O., & Kaur, S. (2016). Generation and characterisation of a reference transcriptome for lentil (Lens culinaris Medik.). International Journal of Molecular Sciences, 17(11), 1887. Doi: 10.3390/ijms17111887 [DOI:10.3390/ijms17111887]
46. Taheri, S., Abdullah, T. L., Rafii, M. Y., Harikrishna, J. A., Werbrouck, S. P. O., Teo, C. H., Sahebi, M., & Azizi, P. (2019). De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Scientific Reports, 9(1), 3047. Doi: 10.1038/s41598-019-39944-2 [DOI:10.1038/s41598-019-39944-2]
47. Tanksley, S. D. (1983). Molecular markers in plant breeding. Plant Molecular Biology Reporter, 1(1), 3-8. Doi: 10.1007/BF02680255 [DOI:10.1007/BF02680255]
48. Torki, A., Hosseinabadi, T., Fasihzadeh, S., Sadeghimanesh, A., Wibowo, J. P., & Lorigooini, Z. (2018). Solubility of calcium oxalate and calcium phosphate crystallization in the presence of crude extract and fractions from Kelussia odoratissima Mozaff. Pharmacognosy Research, 10(4), 379-384. Doi: 10.4103/pr.pr_68_18 [DOI:10.4103/pr.pr_68_18]
49. Wang, P., Yang, L., Zhang, E., Qin, Z., Wang, H., Liao, Y., Wang, X., & Gao, L. (2017). Characterization and development of EST-SSR markers from a cold-stressed transcriptome of centipedegrass by illumina paired-end sequencing. Plant Molecular Biology Reporter, 35, 215-223. Doi: 10.1007/s11105-016-1017-8 [DOI:10.1007/s11105-016-1017-8]
50. Wang, X., Chen, S., Ma, X., Yssel, A. E. J., Chaluvadi, S. R., Johnson, M. S., Gangashetty, P., Hamidou, F., Sanogo, M. D., Zwaenepoel, A., Wallace, J., Van De Peer, Y., Bennetzen, J. L., & Van Deynze, A. (2021). Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis). GigaScience, 10(3), 1-12. Doi: 10.1093/gigascience/giab013 [DOI:10.1093/gigascience/giab013]
51. Wang, Z., Li, J., Luo, Z., Huang, L., Chen, X., Fang, B., Li, Y., Chen, J., & Zhang, X. (2011). Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas). BMC plant Biology, 11(1), 1-9. Doi: 10.1186/1471-2229-11-139 [DOI:10.1186/1471-2229-11-139]
52. Wei, W., Qi, X., Wang, L., Zhang, Y., Hua, W., Li, D., Lv, H., & Zhang, X. (2011). Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics, 12(1), 1-13. Doi: 10.1186/1471-2164-12-451 [DOI:10.1186/1471-2164-12-451]
53. Wu, Q., Bai, X., Zhao, W., Shi, X., Xiang, D., Wan, Y., Wu, X., Sun, Y., Zhao, J., & Peng, L. (2019). Investigation into the underlying regulatory mechanisms shaping inflorescence architecture in Chenopodium quinoa. BMC Genomics, 20(1), 658. Doi: 10.1186/s12864-019-6027-0 [DOI:10.1186/s12864-019-6027-0]
54. Xu, L., Li, P., Su, J., Wang, D., Kuang, Y., Ye, Z., & Chen, M. (2023). EST-SSR development and genetic diversity in the medicinal plant Pseudostellaria heterophylla (Miq.) Pax. Journal of Applied Research on Medicinal and Aromatic Plants, 33, 100450. Doi: 10.1016/j.jarmap.2022.100450 [DOI:10.1016/j.jarmap.2022.100450]
55. Yang, C. Q., Fang, X., Wu, X. M., Mao, Y. B., Wang, L. J., & Chen, X. Y. (2012). Transcriptional Regulation of Plant Secondary Metabolism. Journal of Integrative Plant Biology, 54(10), 703-712. Doi: 10.1111/j.1744-7909.2012.01161.x [DOI:10.1111/j.1744-7909.2012.01161.x]
56. Yin, J., Ren, W., Huang, X., Deng, J., Li, T., & Yin, Y. (2018). Potential mechanisms connecting purine metabolism and cancer therapy. Frontiers in Immunology, 9, 1697. Doi: 10.3389/fimmu.2018.01697 [DOI:10.3389/fimmu.2018.01697]
57. Zhang, J., Liang, S., Duan, J., Wang, J., Chen, S., Cheng, Z., Zhang, Q., Liang, X., & Li, Y. (2012). De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics, 13, 1-6. Doi: 10.1186/1471-2164-13-90 [DOI:10.1186/1471-2164-13-90]
58. Zhang, X., Luo, H., Xu, Z., Zhu, Y., Ji, A., Song, J., & Chen, S. (2015). Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Scientific Reports, 5(1), 11244. Doi: 10.1038/srep11244 [DOI:10.1038/srep11244]
59. Zheng, H., Yu, M. Y., Han, Y., Tai, B., Ni, S. F., Ji, R. F., Pu, C. J., Chen, K., Li, F. Q., Xiao, H., Shen, Y., Zhou, X. T & Huang, L. Q. (2022). Comparative Transcriptomics and Metabolites Analysis of Two Closely Related Euphorbia Species Reveal Environmental Adaptation Mechanism and Active Ingredients Difference. Frontiers in Plant Science, 13, 905275. Doi: 10.3389/fpls.2022.90527 [DOI:10.3389/fpls.2022.905275]
60. Zheng, X., Pan, C., Diao, Y., You, Y., Yang, C., & Hu, Z. (2013). Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genomics, 14, 1-11. Doi: 10.1186/1471-2164-14-490 [DOI:10.1186/1471-2164-14-490]
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramezani M, Nazarian-Firouzabadi F, Ismaili A, Sohrabi S S. Development of EST-SSR molecular markers related to metabolic pathways in Kelussia odoratissima Mozaff. gebsj 2023; 12 (2) :226-240
URL: http://gebsj.ir/article-1-470-fa.html

رمضانی مریم، نظریان فیروزآبادی فرهاد، اسماعیلی احمد، سهرابی سید سجاد. توسعه نشانگرهای مولکولی EST-SSR مرتبط با مسیرهای متابولیکی در گیاه کرفس کوهی. مهندسی ژنتیک و ایمنی زیستی. 1402; 12 (2) :226-240

URL: http://gebsj.ir/article-1-470-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 2 - ( 9-1402 ) برگشت به فهرست نسخه ها
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.07 seconds with 39 queries by YEKTAWEB 4710