[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 1 (5-2024) ::
gebsj 2024, 13(1): 86-99 Back to browse issues page
Bibliometric investigation of the situation of CRISPR/Cas9 in terms of economy, growth and development of life sciences: the competition of countries and the situation of Iran
Atefeh Amini Neisiani , Abbas Karimi-Fard , Abbas Saidi , Masoud Tohidfar *
Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran , m_tohidfar@sbu.ac.ir
Abstract:   (1681 Views)
The invention and advancement of genome editing methods have revolutionized the field of biosciences. The growth and development of this technology have led to significant advancements in medical, agricultural, and industrial biotechnology. This article focuses on the bibliometric analysis of the CRISPR/Cas9 technology as an effective tool in genome editing in the growth and development of biosciences. The data for this research was obtained from the Scopus scientific database from 2013 to 2023. The results showed that the number of scientific publications in this field has been approved at a high acceptance rate by scientific journals. Furthermore, the results indicated that the United States and China are in tight competition in terms of publishing scientific articles in this field. The assessment of Iran's position in genome editing compared to other Middle Eastern countries was another comparison made in this study, showing evidence of Iran's high scientific ranking in using CRISPR technology in medical and industrial sciences. However, there has not been significant growth in the use of this technology in plant sciences and agriculture.
 
Keywords: Bibliometric study, CRISPR/Cas9, genome editing, Situation of Iran
Full-Text [PDF 867 kb]   (188 Downloads)    
Type of Study: Review | Subject: Divers
Received: 2024/02/23 | Accepted: 2024/09/13 | Published: 2024/09/19
References
1. Ajami, M., Moeini, O., Atashi, A., Soleimani, M., Dehghani, H., & Ajami, M. (2023). Highly efficient ESC genome editing with CRISPR/Cas9 for production of laboratory models. Journal of Human Genetics and Genomics, 7(1), 1-10. doi: 10.61186/jhgg.7.1.1 [DOI:10.61186/jhgg.7.1.1]
2. Amini Neisiani, A., Saidi, A., & Tohidfar, M. (2023). CRISPR and biosafety considerations. Genetic Engineering and Biosafety Journal, 12(1), 131-144 (In Persian). dor: 20.1001.1.25885073.1402.12.1.10.4
3. Ashaar -Ghadim, E., Pazhouhandeh, M., Ahmadabadi, M. (2023). Potato genome editing using CRISPR technologies. Genetic Engineering and Biosafety Journal, 11(2), 266-274. dor: 20.1001.1.25885073.1401.11.2.13.2
4. Azadbakht, N., Doosti, A., & Jami, M. S. (2021). Editing of LINC00511 gene with a new CRISPR/Cas9 technique and evaluation of its effects on lung cancer cell line. Journal of Jiroft University of Medical Sciences, 8(2), 11-18 (In Persian). dor: 20.1001.1.25382810.1400.8.2.5.6
5. Bhattacharjee, G., Gohil, N., Khambhati, K., Mani, I., Maurya, R., Karapurkar, J. K., Gohil, J., Chu, D. T., Vu-Thi, H., Alzahrani, K. J., & Show, P. L. (2022). Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. Journal of Controlled Release, 343, 703-723. doi: 10.1016/j.jconrel.2022.02.005 [DOI:10.1016/j.jconrel.2022.02.005] [PMID]
6. Bora, J., Imam, S., Vaibhav, V., & Malik, S. (2023). Use of Genetic Engineering Approach in Bioremediation of Wastewater. In Modern Approaches in Waste Bioremediation: Environmental Microbiology. Springer International Publishing, 485-513. doi: 10.1007/978-3-031-24086-7_23 [DOI:10.1007/978-3-031-24086-7_23]
7. Buchwald, J. E., & Martins, P. N. (2022). Designer organs: The future of personalized transplantation. Artificial Organs, 46(2), 180-190. doi: 10.1111/aor.14151 [DOI:10.1111/aor.14151] [PMID]
8. Chen, Y., Gao, Y., & Wei, P. (2019). Intellectual property and CRISPR technology. Journal of Intellectual Property Rights, 24(2), 133-140. doi: 10.1080/09723788.2019.1598147
9. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823. doi: 10.1126/science.1231143 [DOI:10.1126/science.1231143] [PMID] []
10. Cox, D. B., Gootenberg, J. S., Abudayyeh, O. O., Franklin, B., Kellner, M. J., Joung, J., & Zhang, F. (2021). RNA editing with CRISPR-Cas13. Science, 374(6566), 1380-1385. doi: 10.1126/science.abj9966
11. Dolarslan, M. (2023). CRISPR-Cas9 mediated gene correction of CFTR mutations in cystic fibrosis: evaluating efficacy, safety, and long-term outcomes in patient-derived lung organoids. Shifaa, 2023, 1-8. doi: 0.70470/SHIFAA/2023/005 [DOI:10.70470/SHIFAA/2023/005]
12. Dorgalaleh, A., Kiani, J., Zaker, F., & Safa, M. (2022). The most common disease-causing mutation of factor XIII deficiency is corrected by CRISPR/CAS9 gene editing system. Blood Coagulation & Fibrinolysis, 33(3), 153-158. dio: 10.1097/MBC.0000000000001126 [DOI:10.1097/MBC.0000000000001126] [PMID]
13. Fallah Ziarani, M., & Tohidfar, M. (2018). Genome editing for change the color of the flower using crispr technology. Crop Biotechnology, 8(21), 71-79 (In Persian). dor: 20.1001.1.22520783.1397.8.21.6.8
14. Garrood, W. T., Cuber, P., Willis, K., Bernardini, F., Page, N. M., & Haghighat-Khah, R. E. (2022). Driving down malaria transmission with engineered gene drives. Frontiers in Genetics, 13, 891218. doi: 10.3389/fgene.2022.891218 [DOI:10.3389/fgene.2022.891218] [PMID] []
15. Guk, K., Keem, J. O., Hwang, S. G., Kim, H., Kang, T., Lim, E. K., & Jung, J. (2017). A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosensors and Bioelectronics, 95, 67-71. dio: 10.1016/j.bios.2017.04.016 [DOI:10.1016/j.bios.2017.04.016] [PMID]
16. Haque, E., Taniguchi, H., Hassan, M. M., Bhowmik, P., Karim, M. R., Śmiech, M., Zhao, K., Rahman, M., & Islam, T. (2018). Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Frontiers in Plant Science, 9(617), 1-12. doi: 10.3389/fpls.2018.00617 [DOI:10.3389/fpls.2018.00617] [PMID] []
17. Hasanzadeh, A., Noori, H., Jahandideh, A., Haeri Moghaddam, N., Kamrani Mousavi, S. M., Nourizadeh, H., & Hamblin, M. R. (2022). Smart strategies for precise delivery of CRISPR/Cas9 in genome editing. ACS Applied Bio Materials, 5(2), 413-437. doi: abs/10.1021/acsabm.1c01112 [DOI:10.1021/acsabm.1c01112] [PMID]
18. Hassanien, A., Saadaoui, I., Schipper, K., Al-Marri, S., Dalgamouni, T., Aouida, M., Saeed, S., & Al-Jabri, H. M. (2023). Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Frontiers in Bioengineering and Biotechnology, 10(1104914), 1-12. doi: 10.3389/fbioe.2022.1104914 [DOI:10.3389/fbioe.2022.1104914] [PMID] []
19. Javaid, D., Ganie, S. Y., Hajam, Y. A., & Reshi, M. S. (2022). CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Molecular Biology Reports, 49(12), 12133-12150. doi: 10.1007/s11033-022-07880-6 [DOI:10.1007/s11033-022-07880-6] [PMID] []
20. Jiang, Z., Fu, M., Zhu, D., Wang, X., Li, N., Ren, L., & Yang, G. (2022). Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine & Growth Factor Reviews, 66, 53-73. doi: 10.1016/j.cytogfr.2022.05.003 [DOI:10.1016/j.cytogfr.2022.05.003] [PMID]
21. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. doi: 10.1126/science.1225829 [DOI:10.1126/science.1225829] [PMID] []
22. Karki, U., Fang, H., & Guo, W. (2021) Cellular engineering of plant cells for improved therapeutic protein production. Plant Cell Reports, 40, 1087-1099. doi: 10.1007/s00299-021-02693-6 [DOI:10.1007/s00299-021-02693-6] [PMID] []
23. Khosravi, A. D., Teimoori, A., & Seyed-Mohammadi, S. (2021). Construction of a recombinant Lactobacillus casei expressing fliC gene fused with guanylyl cyclase C and dendritic cell-binding peptide using CRISPR-Cas9 system: a first step towards design of vaccine against colorectal cancer. Reviews and Research in Medical Microbiology, 32(2), 114-123. doi: 10.1097/MRM.0000000000000243 [DOI:10.1097/MRM.0000000000000243]
24. Kumar, V., Jain, M., & Mugasimangalam, R. C. (2019). CRISPR-Cas-mediated genome editing in plants: current status and future prospects. Frontiers in Plant Science, 14, 1-18. doi: 10.3389/fpls.2019.01361 [DOI:10.3389/fpls.2019.01361] [PMID] []
25. Lauerer, A. M., Caravia, X. M., Maier, L. S., Chemello, F., & Lebek, S. (2024). Gene editing in common cardiovascular diseases. Pharmacology & Therapeutics, 108720. doi: 10.1016/j.pharmthera.2024.108720 [DOI:10.1016/j.pharmthera.2024.108720] [PMID]
26. Liu, Q., Yang, F., Zhang, J., Liu, H., Rahman, S., Islam, S., Ma, W., & She, M. (2021). Application of CRISPR/Cas9 in crop quality improvement. International Journal of Molecular Sciences, 22(8), 4206. doi: 10.3390/ijms22084206 [DOI:10.3390/ijms22084206] [PMID] []
27. Liu, W., Li, L., Jiang, J., Wu, M., & Lin, P. (2021). Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precision Clinical Medicine, 4(3), 179-191. doi: 10.1093/pcmedi/pbab014 [DOI:10.1093/pcmedi/pbab014] [PMID] []
28. Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2021). Classification and nomenclature of CRISPR-Cas systems: where from here?. CRISPR Journal, 1(5), 325-336. doi: 10.12688/f1000research.52379.1 [DOI:10.1089/crispr.2018.0033] [PMID] []
29. Marone, D., Mastrangelo, A. M., & Borrelli, G. M. (2023). From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. International Journal of Molecular Sciences, 24(8), 1-23. doi: 10.3390/ijms24087122 [DOI:10.3390/ijms24087122] [PMID] []
30. Mayorga-Ramos, A., Zúñiga-Miranda, J., Carrera-Pacheco, S. E., Barba-Ostria, C., & Guamán, L. P. (2023). CRISPR-Cas-based antimicrobials: design, challenges, and bacterial mechanisms of resistance. ACS infectious diseases, 9(7), 1283-1302. doi: 10.1021/acsinfecdis.2c00649 [DOI:10.1021/acsinfecdis.2c00649] [PMID] []
31. Mohammadian Gol, T., Ureña-Bailén, G., Hou, Y., Sinn, R., Antony, J. S., Handgretinger, R., & Mezger, M. (2023). CRISPR medicine for blood disorders: progress and challenges in delivery. Frontiers in Genome Editing, 4, 1037290. doi: 10.3389/fgeed.2022.1037290 [DOI:10.3389/fgeed.2022.1037290] [PMID] []
32. Montazeri, E. A., Saki, M., Savari, M., Meghdadi, H., & Akrami, S. (2024). Association between the presence of CRISPR-Cas system genes and antibiotic resistance in Klebsiella pneumoniae isolated from patients admitted in Ahvaz teaching hospitals. BMC Infectious Diseases, 24(1), 1117. doi: 10.1186/s12879-024-10018-7 [DOI:10.1186/s12879-024-10018-7] [PMID] []
33. Montazeri-Najafabadi, B., Doosti, A., & Kiani, J. (2020). Evaluation of the effects of UCA1 gene knockout with a new CRISPR/Cas9 gene editing technique in ovarian cancer cell line. Pars Journal of Medical Sciences, 19(1), 10-20. doi: 10.52547/jmj.19.1.3 [DOI:10.52547/jmj.19.1.3]
34. Movahedi, A., Aghaei-Dargiri, S., Li, H., Zhuge, Q., & Sun, W. (2023). CRISPR variants for gene editing in plants: biosafety risks and future directions. International Journal of Molecular Sciences, 24(22), 16241. doi: 10.3390/ijms242216241 [DOI:10.3390/ijms242216241] [PMID] []
35. Msanne, J., Kim, H., & Cahoon, E. B. (2020). Biotechnology tools and applications for development of oilseed crops with healthy vegetable oils. Biochimie, 178, 4-14. doi: 10.1016/j.biochi.2020.09.020 [DOI:10.1016/j.biochi.2020.09.020] [PMID]
36. Naik, B. J., Shimoga, G., Kim, S. C., Manjulatha, M., Subramanyam Reddy, C., Palem, R. R., Kumar, M., Kim, S. Y., & Lee, S. H. (2022). CRISPR/Cas9 and nanotechnology pertinence in agricultural crop refinement. Frontiers in Plant Science, 13, 1-23. doi: 10.3389/fpls.2022.843575 [DOI:10.3389/fpls.2022.843575] [PMID] []
37. Navarro-Guerrero, E., Tay, C., Whalley, J. P., Cowley, S. A., Davies, B., Knight, J. C., & Ebner, D. (2021). Genome-wide CRISPR/Cas9-knockout in human induced pluripotent stem cell (iPSC)-derived macrophages. Scientific Reports, 11(1), 4245. doi: 10.1038/s41598-021-82137-z [DOI:10.1038/s41598-021-82137-z] [PMID] []
38. Nayeri, S., Tohidfar, M., & Saidi, A. (2018). CRISPR/Cas9 System as an Efficient Genome Editing Tool in Developing GM Crops: A Review. Cellular and Molecular Research (Iranian Journal of Biology), 31(4), 542-556 (In Persian). dor: 20.1001.1.23832738.1397.31.4.12.4
39. Norouzi, M., Nazarain-Firouzabadi, F., Ismaili, A., Ahmadvand, R., & Poormazaheri, H. (2024). CRISPR/Cas StNRL1 gene knockout increases resistance to late blight and susceptibility to early blight in potato. Frontiers in Plant Science, 14, 1278127 (In Persian). dio: 10.3389/fpls.2023.1278127 https://doi.org/10.3389/fpls.2024.1435731 [DOI:10.3389/fpls.2023.1278127] [PMID] []
40. Rasul, M. F., Hussen, B. M., Salihi, A., Ismael, B. S., Jalal, P. J., Zanichelli, A., Jamail, E., Baniahmad, A., Ghafouri-Fard, S., Basiri, A., & Taheri, M. (2022). Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Molecular Cancer, 21(1), 64. doi: 10.1186/s12943-021-01487-4 [DOI:10.1186/s12943-021-01487-4] [PMID] []
41. Selvakumar, S. C., Preethi, K. A., Ross, K., Tusubira, D., Khan, M. W. A., Mani, P., Rao, T. N., & Sekar, D. (2022). CRISPR/Cas9 and next generation sequencing in the personalized treatment of cancer. Molecular Cancer, 21(1), 83. doi: 10.1186/s12943-022-01565-1 [DOI:10.1186/s12943-022-01565-1] [PMID] []
42. Stefanoudakis, D., Kathuria-Prakash, N., Sun, A. W., Abel, M., Drolen, C. E., Ashbaugh, C., Zhang, S., Hui, G., Tabatabaei, Y. A., Zektser, Y., & and Lopez, L. P. (2023). The potential revolution of cancer treatment with CRISPR technology. Cancers, 15(6), 1813. doi: 10.3390/cancers15061813 [DOI:10.3390/cancers15061813] [PMID] []
43. Tavakoli, K., Pour-Aboughadareh, A., Kianersi, F., Poczai, P., Etminan, A., & Shooshtari, L. (2021). Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences. BioTech, 10(3), 14. doi: 10.3390/biotech10030014 [DOI:10.3390/biotech10030014] [PMID] []
44. Yadalam, P. K., Arumuganainar, D., Anegundi, R. V., Shrivastava, D., Alftaikhah, S. A. A., Almutairi, H. A., & Srivastava, K. C. (2023). CRISPR-Cas-based adaptive immunity mediates phage resistance in periodontal red complex pathogens. microorganisms, 11(8), 2060. dio: /10.3390/microorganisms11082060 [DOI:10.3390/microorganisms11082060] [PMID] []
45. Zaidi, S. S. E. A., Mahas, A., Vanderschuren, H., & Mahfouz, M. M. (2020). Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome biology, 21(1), 1-19. doi: 10.1186/s13059-020-02204-y [DOI:10.1186/s13059-020-02204-y] [PMID] []
46. Zarif-Yeganeh, M., Farhud, D. D., Rahimpour, A., Sheikholeslami, S., Shivaei, S., & Hedayati, M. (2022). CRISPR/Cas9 RET gene knockout in medullary thyroid carcinoma cell-lines: Optimization and validation. Iranian Journal of Public Health, 51(5), 1084. doi: 10.18502/ijph.v51i5.9424 [DOI:10.18502/ijph.v51i5.9424]
47. Zhang, D., Hussain, A., Manghwar, H., Xie, K., Xie, S., Zhao, S., Larkin, R. M., Qing, P., Jin, S. & Ding, F. (2020). Genome editing with the CRISPR‐Cas system: an art, ethics and global regulatory perspective. Plant Biotechnology Journal, 18(8), 1651-1669. doi: 10.1111/pbi.13383 [DOI:10.1111/pbi.13383] [PMID] []
48. Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2021). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207-221. doi: 10.1016/j.jare.2020.10.003 [DOI:10.1016/j.jare.2020.10.003] [PMID] []
49. Zhang, H., Qin, C., An, C., Zheng, X., Wen, S., Chen, W., Lix, X., Lv, Z., Yang, P., Xu, W., Gao, W., & Wu, Y. (2021). Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 20, 1-22. doi: 10.1186/s12943-021-01431-6 [DOI:10.1186/s12943-021-01431-6] [PMID] []
50. Zhang, S., & Zhu, H. (2024). Development and prospect of gene-edited fruits and vegetables. Food Quality and Safety, 8, fyad045. doi: 10.1093/fqsafe/fyad045 [DOI:10.1093/fqsafe/fyad045]
51. Zhang, S., Wang, Y., Mao, D., Wang, Y., Zhang, H., Pan, Y., & Huang, P. (2023). Current trends of clinical trials involving CRISPR/Cas systems. Frontiers in Medicine, 10, 1292452. doi: 10.3389/fmed.2023.1292452 [DOI:10.3389/fmed.2023.1292452] [PMID] []
52. Zhu, Y. (2022). Advances in CRISPR/Cas9. BioMed Research International, 2022, 9978571. doi: 10.1155/2022/9978571 [DOI:10.1155/2022/9978571] [PMID] []
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amini Neisiani A, Karimi-Fard A, Saidi A, Tohidfar M. Bibliometric investigation of the situation of CRISPR/Cas9 in terms of economy, growth and development of life sciences: the competition of countries and the situation of Iran. gebsj 2024; 13 (1) :86-99
URL: http://gebsj.ir/article-1-477-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 1 (5-2024) Back to browse issues page
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4722