1. Ajami, M., Moeini, O., Atashi, A., Soleimani, M., Dehghani, H., & Ajami, M. (2023). Highly efficient ESC genome editing with CRISPR/Cas9 for production of laboratory models. Journal of Human Genetics and Genomics, 7(1), 1-10. doi: 10.61186/jhgg.7.1.1 [ DOI:10.61186/jhgg.7.1.1] 2. Amini Neisiani, A., Saidi, A., & Tohidfar, M. (2023). CRISPR and biosafety considerations. Genetic Engineering and Biosafety Journal, 12(1), 131-144 (In Persian). dor: 20.1001.1.25885073.1402.12.1.10.4 3. Ashaar -Ghadim, E., Pazhouhandeh, M., Ahmadabadi, M. (2023). Potato genome editing using CRISPR technologies. Genetic Engineering and Biosafety Journal, 11(2), 266-274. dor: 20.1001.1.25885073.1401.11.2.13.2 4. Azadbakht, N., Doosti, A., & Jami, M. S. (2021). Editing of LINC00511 gene with a new CRISPR/Cas9 technique and evaluation of its effects on lung cancer cell line. Journal of Jiroft University of Medical Sciences, 8(2), 11-18 (In Persian). dor: 20.1001.1.25382810.1400.8.2.5.6 5. Bhattacharjee, G., Gohil, N., Khambhati, K., Mani, I., Maurya, R., Karapurkar, J. K., Gohil, J., Chu, D. T., Vu-Thi, H., Alzahrani, K. J., & Show, P. L. (2022). Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. Journal of Controlled Release, 343, 703-723. doi: 10.1016/j.jconrel.2022.02.005 [ DOI:10.1016/j.jconrel.2022.02.005] [ PMID] 6. Bora, J., Imam, S., Vaibhav, V., & Malik, S. (2023). Use of Genetic Engineering Approach in Bioremediation of Wastewater. In Modern Approaches in Waste Bioremediation: Environmental Microbiology. Springer International Publishing, 485-513. doi: 10.1007/978-3-031-24086-7_23 [ DOI:10.1007/978-3-031-24086-7_23] 7. Buchwald, J. E., & Martins, P. N. (2022). Designer organs: The future of personalized transplantation. Artificial Organs, 46(2), 180-190. doi: 10.1111/aor.14151 [ DOI:10.1111/aor.14151] [ PMID] 8. Chen, Y., Gao, Y., & Wei, P. (2019). Intellectual property and CRISPR technology. Journal of Intellectual Property Rights, 24(2), 133-140. doi: 10.1080/09723788.2019.1598147 9. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823. doi: 10.1126/science.1231143 [ DOI:10.1126/science.1231143] [ PMID] [ ] 10. Cox, D. B., Gootenberg, J. S., Abudayyeh, O. O., Franklin, B., Kellner, M. J., Joung, J., & Zhang, F. (2021). RNA editing with CRISPR-Cas13. Science, 374(6566), 1380-1385. doi: 10.1126/science.abj9966 11. Dolarslan, M. (2023). CRISPR-Cas9 mediated gene correction of CFTR mutations in cystic fibrosis: evaluating efficacy, safety, and long-term outcomes in patient-derived lung organoids. Shifaa, 2023, 1-8. doi: 0.70470/SHIFAA/2023/005 [ DOI:10.70470/SHIFAA/2023/005] 12. Dorgalaleh, A., Kiani, J., Zaker, F., & Safa, M. (2022). The most common disease-causing mutation of factor XIII deficiency is corrected by CRISPR/CAS9 gene editing system. Blood Coagulation & Fibrinolysis, 33(3), 153-158. dio: 10.1097/MBC.0000000000001126 [ DOI:10.1097/MBC.0000000000001126] [ PMID] 13. Fallah Ziarani, M., & Tohidfar, M. (2018). Genome editing for change the color of the flower using crispr technology. Crop Biotechnology, 8(21), 71-79 (In Persian). dor: 20.1001.1.22520783.1397.8.21.6.8 14. Garrood, W. T., Cuber, P., Willis, K., Bernardini, F., Page, N. M., & Haghighat-Khah, R. E. (2022). Driving down malaria transmission with engineered gene drives. Frontiers in Genetics, 13, 891218. doi: 10.3389/fgene.2022.891218 [ DOI:10.3389/fgene.2022.891218] [ PMID] [ ] 15. Guk, K., Keem, J. O., Hwang, S. G., Kim, H., Kang, T., Lim, E. K., & Jung, J. (2017). A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosensors and Bioelectronics, 95, 67-71. dio: 10.1016/j.bios.2017.04.016 [ DOI:10.1016/j.bios.2017.04.016] [ PMID] 16. Haque, E., Taniguchi, H., Hassan, M. M., Bhowmik, P., Karim, M. R., Śmiech, M., Zhao, K., Rahman, M., & Islam, T. (2018). Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Frontiers in Plant Science, 9(617), 1-12. doi: 10.3389/fpls.2018.00617 [ DOI:10.3389/fpls.2018.00617] [ PMID] [ ] 17. Hasanzadeh, A., Noori, H., Jahandideh, A., Haeri Moghaddam, N., Kamrani Mousavi, S. M., Nourizadeh, H., & Hamblin, M. R. (2022). Smart strategies for precise delivery of CRISPR/Cas9 in genome editing. ACS Applied Bio Materials, 5(2), 413-437. doi: abs/10.1021/acsabm.1c01112 [ DOI:10.1021/acsabm.1c01112] [ PMID] 18. Hassanien, A., Saadaoui, I., Schipper, K., Al-Marri, S., Dalgamouni, T., Aouida, M., Saeed, S., & Al-Jabri, H. M. (2023). Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Frontiers in Bioengineering and Biotechnology, 10(1104914), 1-12. doi: 10.3389/fbioe.2022.1104914 [ DOI:10.3389/fbioe.2022.1104914] [ PMID] [ ] 19. Javaid, D., Ganie, S. Y., Hajam, Y. A., & Reshi, M. S. (2022). CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Molecular Biology Reports, 49(12), 12133-12150. doi: 10.1007/s11033-022-07880-6 [ DOI:10.1007/s11033-022-07880-6] [ PMID] [ ] 20. Jiang, Z., Fu, M., Zhu, D., Wang, X., Li, N., Ren, L., & Yang, G. (2022). Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine & Growth Factor Reviews, 66, 53-73. doi: 10.1016/j.cytogfr.2022.05.003 [ DOI:10.1016/j.cytogfr.2022.05.003] [ PMID] 21. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. doi: 10.1126/science.1225829 [ DOI:10.1126/science.1225829] [ PMID] [ ] 22. Karki, U., Fang, H., & Guo, W. (2021) Cellular engineering of plant cells for improved therapeutic protein production. Plant Cell Reports, 40, 1087-1099. doi: 10.1007/s00299-021-02693-6 [ DOI:10.1007/s00299-021-02693-6] [ PMID] [ ] 23. Khosravi, A. D., Teimoori, A., & Seyed-Mohammadi, S. (2021). Construction of a recombinant Lactobacillus casei expressing fliC gene fused with guanylyl cyclase C and dendritic cell-binding peptide using CRISPR-Cas9 system: a first step towards design of vaccine against colorectal cancer. Reviews and Research in Medical Microbiology, 32(2), 114-123. doi: 10.1097/MRM.0000000000000243 [ DOI:10.1097/MRM.0000000000000243] 24. Kumar, V., Jain, M., & Mugasimangalam, R. C. (2019). CRISPR-Cas-mediated genome editing in plants: current status and future prospects. Frontiers in Plant Science, 14, 1-18. doi: 10.3389/fpls.2019.01361 [ DOI:10.3389/fpls.2019.01361] [ PMID] [ ] 25. Lauerer, A. M., Caravia, X. M., Maier, L. S., Chemello, F., & Lebek, S. (2024). Gene editing in common cardiovascular diseases. Pharmacology & Therapeutics, 108720. doi: 10.1016/j.pharmthera.2024.108720 [ DOI:10.1016/j.pharmthera.2024.108720] [ PMID] 26. Liu, Q., Yang, F., Zhang, J., Liu, H., Rahman, S., Islam, S., Ma, W., & She, M. (2021). Application of CRISPR/Cas9 in crop quality improvement. International Journal of Molecular Sciences, 22(8), 4206. doi: 10.3390/ijms22084206 [ DOI:10.3390/ijms22084206] [ PMID] [ ] 27. Liu, W., Li, L., Jiang, J., Wu, M., & Lin, P. (2021). Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precision Clinical Medicine, 4(3), 179-191. doi: 10.1093/pcmedi/pbab014 [ DOI:10.1093/pcmedi/pbab014] [ PMID] [ ] 28. Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2021). Classification and nomenclature of CRISPR-Cas systems: where from here?. CRISPR Journal, 1(5), 325-336. doi: 10.12688/f1000research.52379.1 [ DOI:10.1089/crispr.2018.0033] [ PMID] [ ] 29. Marone, D., Mastrangelo, A. M., & Borrelli, G. M. (2023). From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. International Journal of Molecular Sciences, 24(8), 1-23. doi: 10.3390/ijms24087122 [ DOI:10.3390/ijms24087122] [ PMID] [ ] 30. Mayorga-Ramos, A., Zúñiga-Miranda, J., Carrera-Pacheco, S. E., Barba-Ostria, C., & Guamán, L. P. (2023). CRISPR-Cas-based antimicrobials: design, challenges, and bacterial mechanisms of resistance. ACS infectious diseases, 9(7), 1283-1302. doi: 10.1021/acsinfecdis.2c00649 [ DOI:10.1021/acsinfecdis.2c00649] [ PMID] [ ] 31. Mohammadian Gol, T., Ureña-Bailén, G., Hou, Y., Sinn, R., Antony, J. S., Handgretinger, R., & Mezger, M. (2023). CRISPR medicine for blood disorders: progress and challenges in delivery. Frontiers in Genome Editing, 4, 1037290. doi: 10.3389/fgeed.2022.1037290 [ DOI:10.3389/fgeed.2022.1037290] [ PMID] [ ] 32. Montazeri, E. A., Saki, M., Savari, M., Meghdadi, H., & Akrami, S. (2024). Association between the presence of CRISPR-Cas system genes and antibiotic resistance in Klebsiella pneumoniae isolated from patients admitted in Ahvaz teaching hospitals. BMC Infectious Diseases, 24(1), 1117. doi: 10.1186/s12879-024-10018-7 [ DOI:10.1186/s12879-024-10018-7] [ PMID] [ ] 33. Montazeri-Najafabadi, B., Doosti, A., & Kiani, J. (2020). Evaluation of the effects of UCA1 gene knockout with a new CRISPR/Cas9 gene editing technique in ovarian cancer cell line. Pars Journal of Medical Sciences, 19(1), 10-20. doi: 10.52547/jmj.19.1.3 [ DOI:10.52547/jmj.19.1.3] 34. Movahedi, A., Aghaei-Dargiri, S., Li, H., Zhuge, Q., & Sun, W. (2023). CRISPR variants for gene editing in plants: biosafety risks and future directions. International Journal of Molecular Sciences, 24(22), 16241. doi: 10.3390/ijms242216241 [ DOI:10.3390/ijms242216241] [ PMID] [ ] 35. Msanne, J., Kim, H., & Cahoon, E. B. (2020). Biotechnology tools and applications for development of oilseed crops with healthy vegetable oils. Biochimie, 178, 4-14. doi: 10.1016/j.biochi.2020.09.020 [ DOI:10.1016/j.biochi.2020.09.020] [ PMID] 36. Naik, B. J., Shimoga, G., Kim, S. C., Manjulatha, M., Subramanyam Reddy, C., Palem, R. R., Kumar, M., Kim, S. Y., & Lee, S. H. (2022). CRISPR/Cas9 and nanotechnology pertinence in agricultural crop refinement. Frontiers in Plant Science, 13, 1-23. doi: 10.3389/fpls.2022.843575 [ DOI:10.3389/fpls.2022.843575] [ PMID] [ ] 37. Navarro-Guerrero, E., Tay, C., Whalley, J. P., Cowley, S. A., Davies, B., Knight, J. C., & Ebner, D. (2021). Genome-wide CRISPR/Cas9-knockout in human induced pluripotent stem cell (iPSC)-derived macrophages. Scientific Reports, 11(1), 4245. doi: 10.1038/s41598-021-82137-z [ DOI:10.1038/s41598-021-82137-z] [ PMID] [ ] 38. Nayeri, S., Tohidfar, M., & Saidi, A. (2018). CRISPR/Cas9 System as an Efficient Genome Editing Tool in Developing GM Crops: A Review. Cellular and Molecular Research (Iranian Journal of Biology), 31(4), 542-556 (In Persian). dor: 20.1001.1.23832738.1397.31.4.12.4 39. Norouzi, M., Nazarain-Firouzabadi, F., Ismaili, A., Ahmadvand, R., & Poormazaheri, H. (2024). CRISPR/Cas StNRL1 gene knockout increases resistance to late blight and susceptibility to early blight in potato. Frontiers in Plant Science, 14, 1278127 (In Persian). dio: 10.3389/fpls.2023.1278127
https://doi.org/10.3389/fpls.2024.1435731 [ DOI:10.3389/fpls.2023.1278127] [ PMID] [ ] 40. Rasul, M. F., Hussen, B. M., Salihi, A., Ismael, B. S., Jalal, P. J., Zanichelli, A., Jamail, E., Baniahmad, A., Ghafouri-Fard, S., Basiri, A., & Taheri, M. (2022). Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Molecular Cancer, 21(1), 64. doi: 10.1186/s12943-021-01487-4 [ DOI:10.1186/s12943-021-01487-4] [ PMID] [ ] 41. Selvakumar, S. C., Preethi, K. A., Ross, K., Tusubira, D., Khan, M. W. A., Mani, P., Rao, T. N., & Sekar, D. (2022). CRISPR/Cas9 and next generation sequencing in the personalized treatment of cancer. Molecular Cancer, 21(1), 83. doi: 10.1186/s12943-022-01565-1 [ DOI:10.1186/s12943-022-01565-1] [ PMID] [ ] 42. Stefanoudakis, D., Kathuria-Prakash, N., Sun, A. W., Abel, M., Drolen, C. E., Ashbaugh, C., Zhang, S., Hui, G., Tabatabaei, Y. A., Zektser, Y., & and Lopez, L. P. (2023). The potential revolution of cancer treatment with CRISPR technology. Cancers, 15(6), 1813. doi: 10.3390/cancers15061813 [ DOI:10.3390/cancers15061813] [ PMID] [ ] 43. Tavakoli, K., Pour-Aboughadareh, A., Kianersi, F., Poczai, P., Etminan, A., & Shooshtari, L. (2021). Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences. BioTech, 10(3), 14. doi: 10.3390/biotech10030014 [ DOI:10.3390/biotech10030014] [ PMID] [ ] 44. Yadalam, P. K., Arumuganainar, D., Anegundi, R. V., Shrivastava, D., Alftaikhah, S. A. A., Almutairi, H. A., & Srivastava, K. C. (2023). CRISPR-Cas-based adaptive immunity mediates phage resistance in periodontal red complex pathogens. microorganisms, 11(8), 2060. dio: /10.3390/microorganisms11082060 [ DOI:10.3390/microorganisms11082060] [ PMID] [ ] 45. Zaidi, S. S. E. A., Mahas, A., Vanderschuren, H., & Mahfouz, M. M. (2020). Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome biology, 21(1), 1-19. doi: 10.1186/s13059-020-02204-y [ DOI:10.1186/s13059-020-02204-y] [ PMID] [ ] 46. Zarif-Yeganeh, M., Farhud, D. D., Rahimpour, A., Sheikholeslami, S., Shivaei, S., & Hedayati, M. (2022). CRISPR/Cas9 RET gene knockout in medullary thyroid carcinoma cell-lines: Optimization and validation. Iranian Journal of Public Health, 51(5), 1084. doi: 10.18502/ijph.v51i5.9424 [ DOI:10.18502/ijph.v51i5.9424] 47. Zhang, D., Hussain, A., Manghwar, H., Xie, K., Xie, S., Zhao, S., Larkin, R. M., Qing, P., Jin, S. & Ding, F. (2020). Genome editing with the CRISPR‐Cas system: an art, ethics and global regulatory perspective. Plant Biotechnology Journal, 18(8), 1651-1669. doi: 10.1111/pbi.13383 [ DOI:10.1111/pbi.13383] [ PMID] [ ] 48. Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2021). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207-221. doi: 10.1016/j.jare.2020.10.003 [ DOI:10.1016/j.jare.2020.10.003] [ PMID] [ ] 49. Zhang, H., Qin, C., An, C., Zheng, X., Wen, S., Chen, W., Lix, X., Lv, Z., Yang, P., Xu, W., Gao, W., & Wu, Y. (2021). Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 20, 1-22. doi: 10.1186/s12943-021-01431-6 [ DOI:10.1186/s12943-021-01431-6] [ PMID] [ ] 50. Zhang, S., & Zhu, H. (2024). Development and prospect of gene-edited fruits and vegetables. Food Quality and Safety, 8, fyad045. doi: 10.1093/fqsafe/fyad045 [ DOI:10.1093/fqsafe/fyad045] 51. Zhang, S., Wang, Y., Mao, D., Wang, Y., Zhang, H., Pan, Y., & Huang, P. (2023). Current trends of clinical trials involving CRISPR/Cas systems. Frontiers in Medicine, 10, 1292452. doi: 10.3389/fmed.2023.1292452 [ DOI:10.3389/fmed.2023.1292452] [ PMID] [ ] 52. Zhu, Y. (2022). Advances in CRISPR/Cas9. BioMed Research International, 2022, 9978571. doi: 10.1155/2022/9978571 [ DOI:10.1155/2022/9978571] [ PMID] [ ]
|