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Abstract

Environmental stresses, resulting from climatic anomalies and

environmental changes, often have detrimental effects on plant growth,

performance, and survival. These effects include reduced growth, decreased

productivity, irreversible damage, and even plant death. However, under
specific conditions, stresses may enhance certain plant traits, particularly in

response to drought stress. Plants respond to stress through a series of

morphological, biochemical, physiological, and metabolic changes that

enable adaptation and survival in challenging conditions. One of the most

significant mechanisms is "stress memory," which equips plants to respond  Hamid R, Saeidnia F. The role of stress

more rapidly and effectively to recurrent exposure to similar stresses. Stress memory in the adaptation of plants to drought
memory arises from intricate molecular and epigenetic regulations, stress conditions: molecular approaches and
encompassing alterations in the expression of coding and non-coding RNAs, perspectives. Genetic Engineering and

DNA methylation, histone modifications, chromatin remodeling, and = Biosafety Journal 2024; 13 (1) : 128-140
adjustments in phytohormone levels. Stress memory manifests in two  URL:hitp://gebsj.ir/article-1-489-en.html
primary forms: (1) sustained activation or repression of genes even after the

stressor is removed, and (2) enhanced and modified transcriptional responses

to repeated stress events compared to unprimed plants. This study explores

the role of genetic and epigenetic factors in establishing drought stress Gl 55 i il 2 (VP bl Lt cdonn ) Ao
memory and somatic priming. It examines the epigenetic regulations, C D s s L o4 AalE
transcriptional adjustments, and metabolic adaptations in plants subjected to Sl b lha Sy S A 2 S
repeated drought stress. The objective of this research is to provide a deeper VEr VYA s (ol 5 K5 i - 5 5o
understanding of the molecular mechanisms underlying drought stress

memory and to evaluate the potential applications of these insights in crop

improvement programs for enhanced drought tolerance. This knowledge can

facilitate the development of genetic tools and effective breeding techniques

to improve plant resilience to environmental fluctuations.
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Figure 1. The overview of different plant responses to different abiotic stress factors in improving stress management, which shows primary
memory and stress memory (Figure taken from Sharma et al. 2022).
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