[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 1 (5-2024) ::
gebsj 2024, 13(1): 63-73 Back to browse issues page
Oxadiazon, an herbicide potentially beneficial in integrated management of plant diseases
Fatemeh Abyawi , Babak Pakdaman Sardrood * , Elham Elahifard
Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran , bpakdaman@asnrukh.ac.ir
Abstract:   (355 Views)
Herbicides can play an important role in the integrated management of plant diseases. Trichoderma species are known as major biological control fungi (BCF) applied in agriculture. Here, the effect of the herbicide oxadiazon was studied on the in vitro growth of T. asperelloides, and some phytopathogenic fungi (Bipolaris sp., Botrytis cinerea, Fusarium graminearum, and Rhizoctonia solani). Poisoned food method was applied based on potato dextrose agar as the basal medium. The plates were incubated at 26 °C in dark. While B. cinerea was found the most sensitive (38.57%), F. graminearum was one of the most resistant (11.95%) to oxadiazon. However, the significantly higher growth rate of T. asperelloides compared to all tested phytopathogenic fungi and its little sensitivity (5.91%) to oxadiazon indicated the potential of oxadiazon and T. asperelloides for the integrated management of important diseases of the crops in a crop rotation program. The use of COBALT resulted in a tree with 17 nodes, in which the proteins of Bipolaris assigned the highest branches, while the sequences of the enzymes of R. solani and Botrytis cinerea formed a separate cluster.
Keywords: Bipolaris, Botrytis, Fusarium, Rhizoctonia, Trichoderma
     
Type of Study: Research | Subject: Biosafety
Received: 2024/05/14 | Accepted: 2024/09/10 | Published: 2024/09/19
References
1. Alves, E., Faustino, M. A. F, Neves, M. G. P. M. S., Cunha, Â., Nadais, H., & Almeida, A. (2015). Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 22, 34-57. doi: 10.1016/j.jphotochemrev.2014.09.003 [DOI:10.1016/j.jphotochemrev.2014.09.003]
2. Barker, A. L., Barnes, H., & Dayan, F. E. (2020). Conformation of the intermediates in the reaction catalyzed by protoporphyrinogen oxidase: an in silico analysis. International Journal of Molecular Sciences, 21(24), 9495. doi: 10.3390/ijms21249495 [DOI:10.3390/ijms21249495] [PMID] []
3. Beirão, S., Fernandes, S., Coelho, J., Faustino, M. A. F. F., Tomé, J. P. C. C., et al., (2014). Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin. Photochemistry & Photobiology, 90(6), 1387-1396. doi: 10.1111/php.12331 [DOI:10.1111/php.12331] [PMID]
4. Brzezowski, P., Ksas, B., Havaux, M., Grimm, B., Chazaux, M., Peltier, G., Johnson, X., & Alric, J. (2019). The function of protoporphyrinogen IX oxidase in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii. Communications Biology, 2, 159. doi: 10.1038/s42003-019-0395-5 [DOI:10.1038/s42003-019-0395-5] [PMID] []
5. Camadro, J. M., Thome, F., Brouillet, N., & Labbe, P. (1994). Purification and properties of protoporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Mitochondrial location and evidence for a precursor from the protein. The Journal of Biological Chemistry, 269(51), 32085-32091. doi: 10.1016/S0021-9258(18)31604-1 [DOI:10.1016/S0021-9258(18)31604-1] [PMID]
6. Chen, L., Zhang, Y., Yu, H., Cui, D., & Li, B. (2017). Tetrahydrophthalimidobenzoates as protoporphyrinogen IX oxidase inhibiting herbicides. Pesticide Biochemistry and Physiology, 139, 40-45. doi: 10.1016/j.pestbp.2017.04.007 [DOI:10.1016/j.pestbp.2017.04.007] [PMID]
7. Dai, T., Fuchs, B. B., Coleman, J. J., Prates R. A., Astrakas C, st Denis, T. G., Ribeiro, M. S., Mylonakis, E., Hamblin, M. R., & Tegos, G. P. (2012). Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Frontiers in Microbiology, 3, 120. doi: 10.3389/fmicb.2012.00120 [DOI:10.3389/fmicb.2012.00120] [PMID] []
8. Dayan, F. E., Romagni, J. G., Duke, S. O., Robert, I. K., & William, C. K. (2001). Protoporphyrinogen Oxidase Inhibitors, Handbook of Pesticide Toxicology. [DOI:10.1016/B978-012426260-7/50071-9]
9. Devika, O. S., Pail, S., Sarkar, D., Singh, R. R., Singh, S., Parihar, M., Parewa, H. P., Pal, S., Singh, H. B., & Rakshit, A. (2019). Trichoderma: a part of possible answer towards crop residue disposal. Journal of Applied and Natural Science, 11(2), 516-523. doi: 10.31018/jans.v11i2.2090 [DOI:10.31018/jans.v11i2.2090]
10. Dibona-Villanueva, L., & Fuentealba, D. (2022). Protoporphyrin IX-chitosan oligosaccharide conjugate with potent antifungal photodynamic activity. Journal of Agricultural and Food Chemistry, 70(30), 9276-9282. doi: 10.1021/acs.jafc.2c01644 [DOI:10.1021/acs.jafc.2c01644] [PMID]
11. Gamelas, S. R. D., Sierra-Garcia, I. N., Tomé, A. C., Cunha, Â., & Lourenço, L. M. O (2023). In vitro photoinactivation of Fusarium oxysporum conidia with light-activated ammonium phthalocyanines. International Journal of Molecular Sciences, 24, 3922. doi: 10.3390/ijms24043922 [DOI:10.3390/ijms24043922] [PMID] []
12. Heidari, A. (2013). A review on the position of the carcinogenic hazards of pesticides registered in Iran. Plant Protection Journal, 6(1), 1-16. (In Persian)
13. Hu, M., Lu, X., Qin, S., Liu, R., Wang, Q., Lu, C., & Li, W. (2024). Research progress on the biosynthesis, activity and application of natural tetrapyrrole compounds. Arabian Journal of Chemistry, 17(5), 105736. doi: 10.1016/j.arabjc.2024.105736 [DOI:10.1016/j.arabjc.2024.105736]
14. Jacobs, J. M., Jacobs, N. J., Sherman, T. D., & Duke, S. O. (1991). Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiology, 97(1), 197-203. doi: 10.1104/pp.97.1.197 [DOI:10.1104/pp.97.1.197] [PMID] []
15. Larue, C. T., Ream, J. E., Zhou, X., Moshiri, F., Howe, A., Goley, M., Sparks, O. C., et al., (2020). Microbial HemG-type protoporphyrinogen IX oxidase enzymes for biotechnology applications in plant herbicide tolerance traits. Pesticide Management Science, 76(3), 1031-1038. doi: 10.1002/ps.5613 [DOI:10.1002/ps.5613] [PMID]
16. Lipman, D. J., & Pearson, W. R. (1985). Rapid and sensitive protein similarity searches. Science, 227 (4693), 1435-1441. doi: 10.1126/science.2983426 [DOI:10.1126/science.2983426] [PMID]
17. Liu, X., Deng, X. J., Li, C. Y., Xiao, Y. K., Zhao, K., Guo, J., Yang, X. R., et al. (2022). Mutation of protoporphyrinogen IX oxidase gene causes spotted and rolled leaf and its overexpression generates herbicide resistance in rice. International Journal of Molecular Sciences, 23(10), 5781. doi: 10.3390/ijms23105781 [DOI:10.3390/ijms23105781] [PMID] []
18. Matringe, M., Camadro, J. M., Labbe, P., & Scalla, R. (1989). Protoporphyrinogen oxidase inhibition by three peroxidizing herbicides: oxadiazon, LS 82-556 and M&B 39279. FEBS Letters, 245(1-2), 35-38. doi: 10.1016/0014-5793(89)80186-3 [DOI:10.1016/0014-5793(89)80186-3] [PMID]
19. Matringe, M., Camadro, J. M., Labbe, P., & Scalla, R. (1989). Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. The Biochemical Journal, 260(1), 231-235. doi: 10.1042/bj2600231 [DOI:10.1042/bj2600231] [PMID] []
20. Mesquita, M. Q., Menezes, J. C. J. M. D. S., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S, Cunha, Â., Almeida, A., Hackbarth, S., Röder, B., & Faustino, M. A. F. (2014). Photodynamic inactivation of bioluminescent Escherichia coli by neutral and cationic pyrrolidine-fused chlorins and isobacteriochlorins. Bioorganic & Medicinal Chemistry Letters, 24(3), 808-812. doi: 10.1016/j.bmcl.2013.12.097 [DOI:10.1016/j.bmcl.2013.12.097] [PMID]
21. Molina, A., Volrath, S., & Guyer, D. (1999). Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. The Plant Journal, 17 (6), 667-678. doi: 10.1046/j.1365-313X.1999.00420.X [DOI:10.1046/j.1365-313X.1999.00420.x] [PMID]
22. Musavi, M. R. (2013). Herbicides: Knowledge and Application. Marze Danesh Press, Iran. 284 pp. (In Persian)
23. Pakdaman, B. S., & Mohammadi Goltapeh, E. (2018). Weeds, herbicides and plant disease management, pp. 41-178. In: Lichtfouse, E. (ed). Sustainable Agriculture Reviews 31, Biocontrol. Springer, Germany. doi: 10.1007/978-3-319-94232-2_3 [DOI:10.1007/978-3-319-94232-2_3]
24. Pakdaman, B. S., & Mohammadi, N. (2020). Creation of Trichoderman: From an idea to realization. Journal of Biotechnology & Bioresearch 2 (3), JBB.000540.2020 [DOI:10.31031/JBB.2020.02.000540]
25. Pakdaman, B. S., Mohammadi Goltapeh, E., Soltani, B. M., Talebi, A. A., Naderpoor, M., Kruszewska, J. S., Piłsyk, S., Sarrocco, S., & Vannacci, G. (2013). Toward the quantification of confrontation (dual culture) test: a case study on the biological control of Pythium aphanidermatum with Trichoderma asperelloides. Journal of Biofertilizers & Biopesticides, 4, 2. doi: 10.4172/2155-6202.1000137 [DOI:10.4172/2155-6202.1000137]
26. Papadopoulos, J. S., & Agarwala, R. (2007). COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics, 23, 1073-1079. doi: 10.1039/bioinformatics/btm076 [DOI:10.1093/bioinformatics/btm076] [PMID]
27. Phoka, N., Suwannarach, N., Lumyong, S., Ito, S., Matsui, K., Arikit, S., & Sunpapao, A. (2020). Role of volatiles from the endophytic fungus Trichoderma asperelloides PSU-P1 in biocontrol potential and in promoting the plant growth of Arabidopsis thaliana. Journal of Fungi, 6, 341. doi: 10.3390/jof6040341 [DOI:10.3390/jof6040341] [PMID] []
28. Reithner, B., Ibarra-Laclette, E., Mach, R. L., & Herrera-Estrella, A. (2011). Identification of mycoparasitism-related genes in Trichoderma atroviride. Applied and Environmental Microbiology, 77(13), 4361-4370. doi: 10.1128/AEM.00129-11 [DOI:10.1128/AEM.00129-11] [PMID] []
29. Rodrigues, G. B., Dias-Baruffi, M., Holman, N., Wainwright, M., & Braga, G. U. L. (2013). In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagnosis and Photodynamic Therapy, 10(2), 141-149. doi: 10.1016/j.pdpdt.2012.11.004 [DOI:10.1016/j.pdpdt.2012.11.004] [PMID]
30. Singh, R. S. (2001). Plant Disease Management. Science Publishers, United States.
31. Song, J., Zhou, J., Zhang, L., & Li, R. (2020). Mitochondria-mediated azole drug resistance and fungal pathogenicity: opportunities for therapeutic development. Microorganisms, 8(10), 1574. doi: 10.3390/microorganisms8101574 [DOI:10.3390/microorganisms8101574] [PMID] []
32. Tamandegani, P. R., Marik, T., Zafari, D., Balázs, D., Vágvölgyi, C., Szekeres, A., & Kredics, L. (2020). Changes in peptaibol production of Trichoderma species during in vitro antagonistic interactions with fungal plant pathogens. Biomolecules, 10(5), 730. doi: 10.3390/biom10050730 [DOI:10.3390/biom10050730] [PMID] []
33. Vorobey, A. V., & Pinchuk, S. V. (2008). Photodamage to spores of Fusarium fungi sensitized by protoporphyrin IX. Biophysics, 53, 386-389. doi: 10.1134/S0006350908050114 [DOI:10.1134/S0006350908050114]
34. Wang, D. W., Zhang, R. B., Yu, S. Y., Liang, L., Ismail, I., Li, Y. H., Xu, H., Wen, X., & Xi, Z. (2019). Discovery of novel N-isoxazolinylphenyltriazinones as promising protoporphyrinogen IX oxidase inhibitors. Journal of Agricultural and Food Chemistry, 67(45), 12382-12392. doi: 10.1021/acs.jafc.9b04844 [DOI:10.1021/acs.jafc.9b04844] [PMID]
35. Zhao, L. X., Peng, J. F., Liu, F. Y., Zou, Y. L., Gao, S., Fu, Y., & Ye, F. (2022). Discovery of novel phenoxypyridine as promising protoporphyrinogen IX oxidase inhibitors. Pesticide Biochemistry and Physiology, 184, 105102. doi: 10.1016/j.pestbp.2022.105102 [DOI:10.1016/j.pestbp.2022.105102] [PMID]
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abyawi F, Pakdaman Sardrood B, Elahifard E. Oxadiazon, an herbicide potentially beneficial in integrated management of plant diseases. gebsj 2024; 13 (1) :63-73
URL: http://gebsj.ir/article-1-494-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 1 (5-2024) Back to browse issues page
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4710