1. Alves, E., Faustino, M. A. F, Neves, M. G. P. M. S., Cunha, Â., Nadais, H., & Almeida, A. (2015). Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 22, 34-57. doi: 10.1016/j.jphotochemrev.2014.09.003 [ DOI:10.1016/j.jphotochemrev.2014.09.003] 2. Barker, A. L., Barnes, H., & Dayan, F. E. (2020). Conformation of the intermediates in the reaction catalyzed by protoporphyrinogen oxidase: an in silico analysis. International Journal of Molecular Sciences, 21(24), 9495. doi: 10.3390/ijms21249495 [ DOI:10.3390/ijms21249495] [ PMID] [ ] 3. Beirão, S., Fernandes, S., Coelho, J., Faustino, M. A. F. F., Tomé, J. P. C. C., et al., (2014). Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin. Photochemistry & Photobiology, 90(6), 1387-1396. doi: 10.1111/php.12331 [ DOI:10.1111/php.12331] [ PMID] 4. Brzezowski, P., Ksas, B., Havaux, M., Grimm, B., Chazaux, M., Peltier, G., Johnson, X., & Alric, J. (2019). The function of protoporphyrinogen IX oxidase in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii. Communications Biology, 2, 159. doi: 10.1038/s42003-019-0395-5 [ DOI:10.1038/s42003-019-0395-5] [ PMID] [ ] 5. Camadro, J. M., Thome, F., Brouillet, N., & Labbe, P. (1994). Purification and properties of protoporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Mitochondrial location and evidence for a precursor from the protein. The Journal of Biological Chemistry, 269(51), 32085-32091. doi: 10.1016/S0021-9258(18)31604-1 [ DOI:10.1016/S0021-9258(18)31604-1] [ PMID] 6. Chen, L., Zhang, Y., Yu, H., Cui, D., & Li, B. (2017). Tetrahydrophthalimidobenzoates as protoporphyrinogen IX oxidase inhibiting herbicides. Pesticide Biochemistry and Physiology, 139, 40-45. doi: 10.1016/j.pestbp.2017.04.007 [ DOI:10.1016/j.pestbp.2017.04.007] [ PMID] 7. Dai, T., Fuchs, B. B., Coleman, J. J., Prates R. A., Astrakas C, st Denis, T. G., Ribeiro, M. S., Mylonakis, E., Hamblin, M. R., & Tegos, G. P. (2012). Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Frontiers in Microbiology, 3, 120. doi: 10.3389/fmicb.2012.00120 [ DOI:10.3389/fmicb.2012.00120] [ PMID] [ ] 8. Dayan, F. E., Romagni, J. G., Duke, S. O., Robert, I. K., & William, C. K. (2001). Protoporphyrinogen Oxidase Inhibitors, Handbook of Pesticide Toxicology. [ DOI:10.1016/B978-012426260-7/50071-9] 9. Devika, O. S., Pail, S., Sarkar, D., Singh, R. R., Singh, S., Parihar, M., Parewa, H. P., Pal, S., Singh, H. B., & Rakshit, A. (2019). Trichoderma: a part of possible answer towards crop residue disposal. Journal of Applied and Natural Science, 11(2), 516-523. doi: 10.31018/jans.v11i2.2090 [ DOI:10.31018/jans.v11i2.2090] 10. Dibona-Villanueva, L., & Fuentealba, D. (2022). Protoporphyrin IX-chitosan oligosaccharide conjugate with potent antifungal photodynamic activity. Journal of Agricultural and Food Chemistry, 70(30), 9276-9282. doi: 10.1021/acs.jafc.2c01644 [ DOI:10.1021/acs.jafc.2c01644] [ PMID] 11. Gamelas, S. R. D., Sierra-Garcia, I. N., Tomé, A. C., Cunha, Â., & Lourenço, L. M. O (2023). In vitro photoinactivation of Fusarium oxysporum conidia with light-activated ammonium phthalocyanines. International Journal of Molecular Sciences, 24, 3922. doi: 10.3390/ijms24043922 [ DOI:10.3390/ijms24043922] [ PMID] [ ] 12. Heidari, A. (2013). A review on the position of the carcinogenic hazards of pesticides registered in Iran. Plant Protection Journal, 6(1), 1-16. (In Persian) 13. Hu, M., Lu, X., Qin, S., Liu, R., Wang, Q., Lu, C., & Li, W. (2024). Research progress on the biosynthesis, activity and application of natural tetrapyrrole compounds. Arabian Journal of Chemistry, 17(5), 105736. doi: 10.1016/j.arabjc.2024.105736 [ DOI:10.1016/j.arabjc.2024.105736] 14. Jacobs, J. M., Jacobs, N. J., Sherman, T. D., & Duke, S. O. (1991). Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiology, 97(1), 197-203. doi: 10.1104/pp.97.1.197 [ DOI:10.1104/pp.97.1.197] [ PMID] [ ] 15. Larue, C. T., Ream, J. E., Zhou, X., Moshiri, F., Howe, A., Goley, M., Sparks, O. C., et al., (2020). Microbial HemG-type protoporphyrinogen IX oxidase enzymes for biotechnology applications in plant herbicide tolerance traits. Pesticide Management Science, 76(3), 1031-1038. doi: 10.1002/ps.5613 [ DOI:10.1002/ps.5613] [ PMID] 16. Lipman, D. J., & Pearson, W. R. (1985). Rapid and sensitive protein similarity searches. Science, 227 (4693), 1435-1441. doi: 10.1126/science.2983426 [ DOI:10.1126/science.2983426] [ PMID] 17. Liu, X., Deng, X. J., Li, C. Y., Xiao, Y. K., Zhao, K., Guo, J., Yang, X. R., et al. (2022). Mutation of protoporphyrinogen IX oxidase gene causes spotted and rolled leaf and its overexpression generates herbicide resistance in rice. International Journal of Molecular Sciences, 23(10), 5781. doi: 10.3390/ijms23105781 [ DOI:10.3390/ijms23105781] [ PMID] [ ] 18. Matringe, M., Camadro, J. M., Labbe, P., & Scalla, R. (1989). Protoporphyrinogen oxidase inhibition by three peroxidizing herbicides: oxadiazon, LS 82-556 and M&B 39279. FEBS Letters, 245(1-2), 35-38. doi: 10.1016/0014-5793(89)80186-3 [ DOI:10.1016/0014-5793(89)80186-3] [ PMID] 19. Matringe, M., Camadro, J. M., Labbe, P., & Scalla, R. (1989). Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. The Biochemical Journal, 260(1), 231-235. doi: 10.1042/bj2600231 [ DOI:10.1042/bj2600231] [ PMID] [ ] 20. Mesquita, M. Q., Menezes, J. C. J. M. D. S., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S, Cunha, Â., Almeida, A., Hackbarth, S., Röder, B., & Faustino, M. A. F. (2014). Photodynamic inactivation of bioluminescent Escherichia coli by neutral and cationic pyrrolidine-fused chlorins and isobacteriochlorins. Bioorganic & Medicinal Chemistry Letters, 24(3), 808-812. doi: 10.1016/j.bmcl.2013.12.097 [ DOI:10.1016/j.bmcl.2013.12.097] [ PMID] 21. Molina, A., Volrath, S., & Guyer, D. (1999). Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. The Plant Journal, 17 (6), 667-678. doi: 10.1046/j.1365-313X.1999.00420.X [ DOI:10.1046/j.1365-313X.1999.00420.x] [ PMID] 22. Musavi, M. R. (2013). Herbicides: Knowledge and Application. Marze Danesh Press, Iran. 284 pp. (In Persian) 23. Pakdaman, B. S., & Mohammadi Goltapeh, E. (2018). Weeds, herbicides and plant disease management, pp. 41-178. In: Lichtfouse, E. (ed). Sustainable Agriculture Reviews 31, Biocontrol. Springer, Germany. doi: 10.1007/978-3-319-94232-2_3 [ DOI:10.1007/978-3-319-94232-2_3] 24. Pakdaman, B. S., & Mohammadi, N. (2020). Creation of Trichoderman: From an idea to realization. Journal of Biotechnology & Bioresearch 2 (3), JBB.000540.2020 [ DOI:10.31031/JBB.2020.02.000540] 25. Pakdaman, B. S., Mohammadi Goltapeh, E., Soltani, B. M., Talebi, A. A., Naderpoor, M., Kruszewska, J. S., Piłsyk, S., Sarrocco, S., & Vannacci, G. (2013). Toward the quantification of confrontation (dual culture) test: a case study on the biological control of Pythium aphanidermatum with Trichoderma asperelloides. Journal of Biofertilizers & Biopesticides, 4, 2. doi: 10.4172/2155-6202.1000137 [ DOI:10.4172/2155-6202.1000137] 26. Papadopoulos, J. S., & Agarwala, R. (2007). COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics, 23, 1073-1079. doi: 10.1039/bioinformatics/btm076 [ DOI:10.1093/bioinformatics/btm076] [ PMID] 27. Phoka, N., Suwannarach, N., Lumyong, S., Ito, S., Matsui, K., Arikit, S., & Sunpapao, A. (2020). Role of volatiles from the endophytic fungus Trichoderma asperelloides PSU-P1 in biocontrol potential and in promoting the plant growth of Arabidopsis thaliana. Journal of Fungi, 6, 341. doi: 10.3390/jof6040341 [ DOI:10.3390/jof6040341] [ PMID] [ ] 28. Reithner, B., Ibarra-Laclette, E., Mach, R. L., & Herrera-Estrella, A. (2011). Identification of mycoparasitism-related genes in Trichoderma atroviride. Applied and Environmental Microbiology, 77(13), 4361-4370. doi: 10.1128/AEM.00129-11 [ DOI:10.1128/AEM.00129-11] [ PMID] [ ] 29. Rodrigues, G. B., Dias-Baruffi, M., Holman, N., Wainwright, M., & Braga, G. U. L. (2013). In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagnosis and Photodynamic Therapy, 10(2), 141-149. doi: 10.1016/j.pdpdt.2012.11.004 [ DOI:10.1016/j.pdpdt.2012.11.004] [ PMID] 30. Singh, R. S. (2001). Plant Disease Management. Science Publishers, United States. 31. Song, J., Zhou, J., Zhang, L., & Li, R. (2020). Mitochondria-mediated azole drug resistance and fungal pathogenicity: opportunities for therapeutic development. Microorganisms, 8(10), 1574. doi: 10.3390/microorganisms8101574 [ DOI:10.3390/microorganisms8101574] [ PMID] [ ] 32. Tamandegani, P. R., Marik, T., Zafari, D., Balázs, D., Vágvölgyi, C., Szekeres, A., & Kredics, L. (2020). Changes in peptaibol production of Trichoderma species during in vitro antagonistic interactions with fungal plant pathogens. Biomolecules, 10(5), 730. doi: 10.3390/biom10050730 [ DOI:10.3390/biom10050730] [ PMID] [ ] 33. Vorobey, A. V., & Pinchuk, S. V. (2008). Photodamage to spores of Fusarium fungi sensitized by protoporphyrin IX. Biophysics, 53, 386-389. doi: 10.1134/S0006350908050114 [ DOI:10.1134/S0006350908050114] 34. Wang, D. W., Zhang, R. B., Yu, S. Y., Liang, L., Ismail, I., Li, Y. H., Xu, H., Wen, X., & Xi, Z. (2019). Discovery of novel N-isoxazolinylphenyltriazinones as promising protoporphyrinogen IX oxidase inhibitors. Journal of Agricultural and Food Chemistry, 67(45), 12382-12392. doi: 10.1021/acs.jafc.9b04844 [ DOI:10.1021/acs.jafc.9b04844] [ PMID] 35. Zhao, L. X., Peng, J. F., Liu, F. Y., Zou, Y. L., Gao, S., Fu, Y., & Ye, F. (2022). Discovery of novel phenoxypyridine as promising protoporphyrinogen IX oxidase inhibitors. Pesticide Biochemistry and Physiology, 184, 105102. doi: 10.1016/j.pestbp.2022.105102 [ DOI:10.1016/j.pestbp.2022.105102] [ PMID]
|