[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 12, Issue 2 (11-2023) ::
gebsj 2023, 12(2): 157-167 Back to browse issues page
Utilizing Plant BY-2 Cell Suspension Platform for the Production of Beta-1, 3-Glucanase Enzyme
Reza Mohammadzadeh , Mostsfa Motallebi * , Zahra Moghaddassi Jahromi
Plant Molecular Biotechnology Department, National Institute of Genetic Engineering and Biotechnology , motalebi@nigeb.ac.ir
Abstract:   (1077 Views)
Due to the increasing demand for recombinant proteins free from animal products, plant cells are considered as a suitable platform for the production of these proteins. Plant cells have advantages such as low maintenance cost, ease of separation and purification of the produced products, and independent cultivation from weather conditions, soil quality, seasons, day length, and weather conditions. In this study, BY-2 plant cells were used as a platform for producing recombinant proteins. BY-2 cells have a high cell division rate, which is an important feature of these cells. To optimize the transfer and expression of genes in BY-2 cells, the gus reporter gene was transferred to these cells. Expression of this gene leads to a measurable phenotype. To confirm the presence of the gus gene in BY-2 cells, the expected 521bp fragment was observed using PCR. Additionally, to further confirm the biochemical expression of GUS in BY-2 cells, cell blue staining was observed. To express the beta-1,3-glucanase enzyme, the intron containing bgnI gene from the T. virens fungal strain was transferred to BY-2 cells using the pBI121GUS- dual vector. The expression of the protein in BY-2 cells was confirmed by SDS-PAGE analysis. The activity of the beta-1,3-glucanase enzyme (BgnI) was determined using the dinitrosalicylic acid (DNS) method to measure the amount of reducing sugars produced by the enzyme. The results showed that the transgenic BY-2 cells were capable of expressing active beta-1,3-glucanase enzyme.                                                                                              
Keywords: beta-1, 3-glucanase enzyme, recombinant proteins, bgnI gene, BY-2 cell, glucan.
Full-Text [PDF 1168 kb]   (280 Downloads)    
Type of Study: Research | Subject: Plant
Received: 2023/06/19 | Accepted: 2023/09/8 | Published: 2024/03/14
References
1. Bahramsari N., M.R. Zamani and M. Motallebi. (2005). β-1,3-glucanase production in Trichoderma isolates. Iranian Journal of Biology. 18(3): 261-271. (In Persian)
2. Bai, L., Kim, J., Son, K.-H., Shin, D.-H., Ku, B.-H., Kim, D. Y., & Park, H.-Y. (2021). Novel Anti-Fungal d-Laminaripentaose-Releasing Endo-β-1,3-glucanase with a RICIN-like Domain from Cellulosimicrobium funkei HY-13. Biomolecules, 11(8), Article 8. [DOI:10.3390/biom11081080]
3. Brazil, C., Oliveira, D. F. de, Duarte, R. A., Galo, J. M., Lucchetta, L., Santos, E. da C. dos, & Hashimoto, E. H. (2019). β-Glucanase Addition in Brewing Malt Produced by Reduced Time of Germination. Brazilian Archives of Biology and Technology, 62, e19180315. [DOI:10.1590/1678-4324-2019180315]
4. Butler, M., & Moo-Young, M. (2011). Comprehensive biotechnology (2nd ed). Elsevier. http://public.eblib.com/choice/publicfullrecord.aspx?p=858607
5. Cervone, F., De Lorenzo, G., Degrà, L., Salvi, G., & Bergami, M. (1987). Purification and Characterization of a Polygalacturonase-Inhibiting Protein from Phaseolus vulgaris L. 1. Plant Physiology, 85(3), 631-637. [DOI:10.1104/pp.85.3.631]
6. Claus, H., & Mojsov, K. (2018). Enzymes for Wine Fermentation: Current and Perspective Applications. Fermentation, 4(3), Article 3. [DOI:10.3390/fermentation4030052]
7. Du, B., Meenu, M., Liu, H., & Xu, B. (2019). A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. International Journal of Molecular Sciences, 20(16), Article 16. [DOI:10.3390/ijms20164032]
8. Favaron, F. (2001). Gel detection of Allium porrum polygalacturonase-inhibiting protein reveals a high number of isoforms. Physiological and Molecular Plant Pathology, 58(6), 239-245. [DOI:10.1006/pmpp.2001.0333]
9. Gallagher, S. R. (2012). GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press.
10. Gavanji, S., & Larki, B. (2017). Comparative effect of propolis of honey bee and some herbal extracts on Candida albicans. Chinese Journal of Integrative Medicine, 23(3), 201-207. [DOI:10.1007/s11655-015-2074-9]
11. Ghazavi Esfahani, M., Yousefi Kopaei, F., & Mirtalebi, M. (2023). Effects of Some Isolates of Trichoderma spp. And Rhizobacteria in Control of the Causal Agent of Cantaloupe Fusarium Wilt (Fusarium oxysporum f. Sp. Melonis). Gebsj, 12(1), 0-0. 20.1001.1.25885073.1402.12.1.11.5 (In Persian).
12. Gilani, S., Gracia, M. I., Barnard, L., Dersjant-Li, Y., Millán, C., & Gibbs, K. (2021). Effects of a xylanase and beta-glucanase enzyme combination on growth performance of broilers fed maize-soybean meal-based diets. Journal of Applied Animal Nutrition, 9(2), 77. [DOI:10.3920/JAAN2021.0004]
13. Häkkinen, S. T., Reuter, L., Nuorti, N., Joensuu, J. J., Rischer, H., & Ritala, A. (2018). Tobacco BY-2 media component optimization for a cost-efficient recombinant protein production. Frontiers in Plant Science, 9, 45. [DOI:10.3389/fpls.2018.00045]
14. Józefiak, D., Rutkowski, A., Jensen, B. B., & Engberg, R. M. (2006). The effect of -glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. British Poultry Science, 47(1), 57-64. [DOI:10.1080/00071660500475145]
15. Karunaratne, N. D., Classen, H. L., Ames, N. P., Bedford, M. R., & Newkirk, R. W. (2022). Effects of diet hulless barley and beta-glucanase levels on ileal digesta soluble beta-glucan molecular weight and carbohydrate fermentation in laying hens. Poultry Science, 101(5), 101735. [DOI:10.1016/j.psj.2022.101735]
16. Kourkoumpetis, T., Manolakaki, D., Velmahos, G. C., Chang, Y., Alam, H. B., De Moya, M. M., Sailhamer, E. A., & Mylonakis, E. (2010). Candida infection and colonization among non-trauma emergency surgery patients. Virulence, 1(5), 359-366. [DOI:10.4161/viru.1.5.12795]
17. Marco, J. L. de, & Felix, C. R. (2007). Purification and characterization of a beta-Glucanase produced by Trichoderma harzianum showing biocontrol potential. Brazilian Archives of Biology and Technology, 50, 21-29. [DOI:10.1590/S1516-89132007000100003]
18. Miyanishi, N., Inaba, Y., Okuma, H., Imada, C., & Watanabe, E. (2004). Amperometric determination of laminarin using immobilized β-1,3-glucanase. Biosensors & Bioelectronics, 19, 557-562. [DOI:10.1016/S0956-5663(03)00253-7]
19. Mohamadkhani, M., Mirakhorli, N., Emamzadeh, R., & Khajali, fariborz. (2018). Expression of β (1-3)(1-4) glucanase gene in Lactococcus lactis to produce an animal probiotic feed. Gebsj, 6(2), 213-221. (In Persian)
20. Mohammadzadeh, R., Motalebi, M., Zaman,i M.R., Bidmeshkipour, A. (2008). IDENTIFICATION, CLONING AND STRUCTURE ANALYSIS OF β, 3 GLUCANASE (BGNL) GENE FROM TRICHODERMA VIRENS (10). IRANIAN JOURNAL OF BIOLOGY, 21, 483-492. (In Persian)
21. Murphy, E. J., Rezoagli, E., Major, I., Rowan, N., & Laffey, J. G. (2021). β-Glucans. Encyclopedia, 1(3), Article 3. [DOI:10.3390/encyclopedia1030064]
22. Saito, H., Misaki, A., & Harada, T. (1968). A Comparison of the Structure of Curdlan and Pachyman. Agricultural and Biological Chemistry, 32(10), 1261-1269. [DOI:10.1271/bbb1961.32.1261]
23. Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual. CSHL Press.
24. Usoltseva, R. V., Belik, A. A., Kusaykin, M. I., Malyarenko, O. S., Zvyagintsevа, T. N., & Ermakova, S. P. (2020). Laminarans and 1,3-β-D-glucanases. International Journal of Biological Macromolecules, 163, 1010-1025. [DOI:10.1016/j.ijbiomac.2020.07.034]
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadzadeh R, Motallebi M, Moghaddassi Jahromi Z. Utilizing Plant BY-2 Cell Suspension Platform for the Production of Beta-1, 3-Glucanase Enzyme. gebsj 2023; 12 (2) :157-167
URL: http://gebsj.ir/article-1-463-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 2 (11-2023) Back to browse issues page
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4713