[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 12, Issue 2 (11-2023) ::
gebsj 2023, 12(2): 281-293 Back to browse issues page
CRISPR/Cas Systems Diversity in Leuconostoc Genus
Sara Ghaffarian * , Bahman Panahi
Department of Cellular and Molecular Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran , s.ghaffarian@azruniv.ac.ir
Abstract:   (1057 Views)
Bacteriophage infections are one of the key challenges in the use of various bacteria in industries. CRISPR-Cas systems are part of the bacterial immune system against viral infections and determining the characteristics of these systems can be beneficial for the formulation and use of these bacteria. To investigate the CRISPR/Cas system in the Leuconostoc genus, the complete genome sequences of 18 reported species of this genus were explored and their CRISPR/Cas system information was analyzed using homology-based algorithms. Then, the characteristics of the conformational structure and stability of recognized systems were determined based on MFE values, phage recognition sites were identified using BLAST approaches, and the evolutionary relationships of these systems were analyzed based on amino acid sequence of associated proteins. Based on the obtained results, 9 of 18 reported species for this genus contain whole CRISPR/Cas system. CRISPR/Cas type analysis confirmed that except for one case, all strains contained the type II-A system. In these systems, the number of repeats and average length of spacers varied from 4 to 101 and 28 to 30 nucleotides, respectively.  Nine types of PAM sequences were identified at the 3´ and 5´ ends of these systems. Based on relationship analysis, the studied system was divided into two main groups. Subtype II-A appears to be the most active system against foreign DNA and phages in the Leuconostoc genus.
Keywords: Leuconostoc, CRISPR, Diversity, Relationship, Structure.
Full-Text [PDF 1400 kb]   (252 Downloads)    
Type of Study: Research | Subject: Divers
Received: 2023/08/2 | Accepted: 2024/02/13 | Published: 2024/03/14
References
1. Breidt, F. (2004). A Genomic Study of Leuconostoc mesenteroides and the Molecular Ecology of Sauerkraut Fermentations. Journal of Food Science, 69(1), 30-32. doi: 10.1111/j.1365-2621.2004.tb17874.x [DOI:10.1111/j.1365-2621.2004.tb17874.x]
2. Chen, Y.S., Wang, L.T., Wu, Y.C., Mori, K., Tamura, T., Chang, C.H., et al. (2020). Leuconostoc litchii sp. nov, a novel lactic acid bacterium isolated from lychee. International Journal of Systematic and Evolutionary Microbiology, 70(3), 1585-1590. doi: 10.1099/ijsem.0.003938 [DOI:10.1099/ijsem.0.003938]
3. Cogan, T.M. & Jordan, K.N. (1994). Metabolism of Leuconostoc Bacteria. Journal of Dairy Science 77(9):2704-2717. doi: 10.3168/jds.S0022-0302(94)77213-1 [DOI:10.3168/jds.S0022-0302(94)77213-1]
4. Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., et al. (2018). CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Research, 46 (W1), 246-251. doi: 10.1093/nar/gky425 [DOI:10.1093/nar/gky425]
5. Crawley, A.B., Henriksen, E.D., Stout, E., Brandt, K. & Barrangou, R. (2018). Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Scientific Reports, 8, 1-12. doi: 10.1038/s41598-018-29746-3 [DOI:10.1038/s41598-018-29746-3]
6. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. (2004). WebLogo: a sequence logo generator. Genome Research, 14 (6), 1188-1190. doi: 10.1101/ gr.849004 [DOI:10.1101/gr.849004]
7. Grissa, I., Vergnaud, G. & Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172. doi: 10.1186/1471-2105-8-172 [DOI:10.1186/1471-2105-8-172]
8. Gruber, A.R., Lorenz, R., Bernhart, S.H., Neuböck, R. & Hofacker, I.L. (2008). The Vienna RNA websuite. Nucleic Acids Research, 36, 70-74. doi: 10.1093/nar/gkn188 [DOI:10.1093/nar/gkn188]
9. Held, N.L., Herrera, A., Cadillo-Quiroz, H. and Whitaker, R.J. (2010). CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS One, 5, e12988. doi: 10.1371/journal.pone.0012988 [DOI:10.1371/journal.pone.0012988]
10. Hidalgo-Cantabrana, C., Crawley, A.B., Sanchez, B. and Barrangou, R. (2017). Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum. Frontiers in Microbiology, 8, 1851. doi: 10.3389/fmicb.2017.01851 [DOI:10.3389/fmicb.2017.01851]
11. Hofacker, I.L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31, 3429-3431. doi: 10.1093/nar/gkg599 [DOI:10.1093/nar/gkg599]
12. Horvath, P., Romero, D.A., Coûté-Monvoisin, A.C., Richards, M., Deveau, H., Moineau, S., et al. (2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology, 190(4), 1401-1412. doi: 10.1128/jb.01415-07 [DOI:10.1128/JB.01415-07]
13. Ilıkkan, Ö.K. (2021). CRISPR-Cas systems and anti-repeat sequences of Lactobacillus curvatus, Lactobacillus graminis, Lactobacillus fuchuensis, and Lactobacillus sakei genomes. Microbiology Socity of Korea, 57(1), 12-22. doi: 10.7845/kjm.2021.0093
14. Jeon, H.H., Kim, K.H., Chun, B.H., Ryu, B.H., Han, N.S. & Jeon, C.O. (2017). A proposal of Leuconostoc mesenteroides subsp. jonggajibkimchii subsp. nov. And reclassification of Leuconostoc mesenteroides subsp. suionicum (GU et al., 2012) as Leuconostoc suionicum sp. nov. Based on complete genome sequences. International Journal of Systematic and Evolutionary Microbiology, 67(7), 2225-2230. doi: 10.1099/ijsem.0.001930 [DOI:10.1099/ijsem.0.001930]
15. Khan, Z., Alim, Z., Khan, A.A, Sattar, T., Zeshan, A., Saboor, T., et al. (2022). History and Classification of CRISPR/Cas System. In A. Ahmad, S.H. Khan, & Z. Khan (Ed.). The CRISPR/Cas Tool Kit for Genome Editing (pp. 29-52). Singapore: Springer. doi: 10.1007/978-981-16-6305-5_2 [DOI:10.1007/978-981-16-6305-5_2]
16. Kim, D. & Robyt, J.F. (1995). Production, selection and characteristic of mutants of leuconostoc mesenteroides b-742 constitutive for dextran. Enzyme and microbial Technology, 17(8), 689-95. doi: 10.1016/0141-0229(94)90086-8 [DOI:10.1016/0141-0229(94)90086-8]
17. Koonin, E.V. & Makarova, K.S. (2013). CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA biology, 10(5), 679-686. doi: 10.4161/rna.24022 [DOI:10.4161/rna.24022]
18. Koonin, E.V., Makarova, K.S. & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67-78. doi: 10.1016/j.mib.2017.05.008 [DOI:10.1016/j.mib.2017.05.008]
19. Levin, B.R., Moineau, S., Bushman, M. & Barrangou, R. (2013). The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS Genetics, 9(3), e1003312. doi: 10.1371/journal.pgen.1003312 [DOI:10.1371/journal.pgen.1003312]
20. Long, J., Xu, Y., Ou, L., Yang, H., Xi, Y., Chen, S., et al. (2019). Diversity of CRISPR-Cas system in Clostridium perfringen. Molecular Genetics and Genomics, 294, 1263-1275. doi: 10.1007/s00438-019-01579-3 [DOI:10.1007/s00438-019-01579-3]
21. Lonvaud funnel, A. (1999). Leuconostoc. In C.A. Batt & R.K. Robinson (Ed.). Encyclopedia of Food Microbiology (pp. 455-465). Amsterdam, Elsevier: Academic Press. doi: 10.1016/B978-0-12-384730-0.00416-X [DOI:10.1016/B978-0-12-384730-0.00416-X]
22. Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., et al. (2011). Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 9(6), 467-477. doi: 10.1038/nrmicro2577 [DOI:10.1038/nrmicro2577]
23. Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J., et al. (2020). Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67-83. doi: 10.1038/s41579-019-0299-x [DOI:10.1038/s41579-019-0299-x]
24. Marraffini, L.A. & Sontheimer, E.J. (2010). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews Genetics, 11(3), 181-190. doi: 10.1038/nrg2749 [DOI:10.1038/nrg2749]
25. Martinez-Murcia, A.I. & Collins, M.D. (1990). A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S rRNA. FEMS Microbiology Letters, 70(1), 73-83. doi: 10.1016/0378-1097(90)90106-z [DOI:10.1016/0378-1097(90)90106-Z]
26. Martinez-Murcia, A., Harland, N.M. & Collins, M.D. (1991). A phylogenetic analysis of an atypical leuconostoc: description of Leuconostoc fal/ax spp. nov. FEMS Microbiology Letters, 66(1), 55-59. doi: 10.1016/0378-1097(91)90420-f [DOI:10.1016/0378-1097(91)90420-F]
27. Panahi, b., Majidi, M. & Hejazi, M.A. (2022). Genome Mining Approach Reveals the Occurrence and Diversity Pattern of Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Systems in Lactobacillus brevis Strains. Frontiers in Microbiology, 13, 911706. doi: 10.3389/fmicb.2022.911706 [DOI:10.3389/fmicb.2022.911706]
28. Riesenberg, S., Helmbrecht, N., Kanis, P., Maricic, T. & Pääbo, S. (2022). Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nature Communications, 13(1), 1-8. doi: 10.1038/s41467-022-28137-7 [DOI:10.1038/s41467-022-28137-7]
29. Rossi, C.C., Souza-Silva, T., Araújo-Alves, A.V. & Giambiagi-deMarval, M. (2017). CRISPR-Cas systems features and the gene-reservoir role of coagulasenegative Staphylococci. Frontiers in Microbiology, 8, 1545. doi: 10.3389/fmicb.2017.01545 [DOI:10.3389/fmicb.2017.01545]
30. Rostampour, M., Masoomi, R., Nami, Y. & Panahi, B. (2022). A Review of Anti-Phage Systems in Lactic Acid Bacteria. Journal of BioSafety 15(2): 37-54. doi: 20.1001.1.27170632.1401.15.2.8.4 [In persian]
31. Sultan, Q., Ashraf, S., Munir, A., Khan, S.H., Munawar, N., Abd-Elsalam, K.A. & Ahmad, A. (2022). Beyond Genome Editing: CRISPR Approaches. In: A. Ahmad, S. Habibullah Khan & Z. Khan (Ed.). The CRISPR/Cas Tool Kit for Genome Editing (pp. 187-218). Singapore: Springer. doi: 10.1007/978-981-16-6305-5 [DOI:10.1007/978-981-16-6305-5]
32. Van Belkum, A., Soriaga, L.B., LaFave, M.C., Akella, S., Veyrieras, J.B., Barbu, E.M., et al. (2015). Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio, 6(6), e01796-15. doi: 0.1128/mBio.01796-15 [DOI:10.1128/mBio.01796-15]
33. Van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M. & Brouns, S.J. (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences, 34(8), 401-407. doi: 10.1016/j.tibs.2009.05.002 [DOI:10.1016/j.tibs.2009.05.002]
34. Yang, D. & Woese, C.R. (1989). Phylogenetic structure of the "Leuconostocs": an interesting case of a rapidly evolving organism. Systematic and Applied Microbiology, 12(2), 145-149. doi: 10.1016/S0723-2020(89)80005-0 [DOI:10.1016/S0723-2020(89)80005-0]
35. Yang, L., Li, W., Ujiroghene, O.J., Yang, Y., Lu, J., Zhang, S, et al. (2020). Occurrence and Diversity of CRISPR Loci in Lactobacillus casei Group. Frontiers in Microbiology, 11: 624. doi: 10.3389/fmicb.2020.00624 Beijerinck 1901, and :union: of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782-2858. doi: 10.1099/ijsem.0.004107 [DOI:10.1099/ijsem.0.004107]
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaffarian S, Panahi B. CRISPR/Cas Systems Diversity in Leuconostoc Genus. gebsj 2023; 12 (2) :281-293
URL: http://gebsj.ir/article-1-467-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 2 (11-2023) Back to browse issues page
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4713