[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 2 (11-2024) ::
gebsj 2024, 13(2): 131-153 Back to browse issues page
Investigation of root and crown tissue death of Beta vulagris, Triticum aestivum and Zea mays by different Pythium spp. in laboratory conditions
Tayyebeh Kiyani * , Vaheh Minassian , Seyed Ali Mousavi Jorf , Saeedeh Dehghanpour Farashah
Master of Plant Pathology, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran. , kiyani1386@yahoo.com
Abstract:   (1160 Views)
Pathogenicity status of 20 isolates of Pythium pathogen, which included 8 species of P. aphanidermatum, Pythium Group G, P. ultiumum, P. deliense, Pythium Group F, P. inflatum, P. ostracodes and P. diclinum on the tissue-mortality of the collar and root of wheat, corn and sugar beet plants were studied. For this purpose, different pathogenicity tests were conducted in which different culture media were used, such as CMA, WA, millet mixed with the pseudo-fungui and vermiculite mixed with the pseudofungus. In wheat, P. aphanidermatum and P. ostracodes species caused more dead tissue of root and crown than the other species, and the severity of dead tissue and seedling death caused by P. aphanidermatum was more than the other isolates. In corn, P. aphanidermatum caused more tissue death of the collar than the other species, and P. deliense ranked next to it. And these two species caused corn root dead tissue almost to the same extent and the percentage of dead tissue caused by them was more than the other species. The severity of root and crown tissue death by P. aphanidermatum in sugar beet was more than the other isolates and the extent of dead tissue of the root was much more than that of the crown.
Article number: 1
Keywords: Pythium spp., crown and root necrosis, seedling death, pathogenicity.
Full-Text [PDF 1178 kb]   (150 Downloads)    
Type of Study: Research | Subject: Divers
Received: 2024/07/2 | Accepted: 2024/11/13 | Published: 2024/12/18
References
1. Afzali, H., & Banihashemi, Z. (2000). A new record of a species of Pythium as a causal agent of sugar beet root rot in Iran. In 14th Iranian Plant Protection Congress, Isfahan, Iran.
2. Alarjani, K. M., & Elshikh, M. S. (2024). Plant growth‐promoting and biocontrol traits of endophytic Bacillus licheniformis against soft rot causing Pythium myriotylum in ginger plant. Journal of Basic Microbiology, e202300643. https://doi.org/10.1002/jobm.202300643 [DOI:10.1002/jobm.202300643.] [PMID]
3. Ao, N., Zou, H., Li, J., Shao, H., Kageyama, K., & Feng, W. (2024). First report of Pythium aphanidermatum and Pythium myriotylum causing root rot on chili pepper (Capsicum annuum L.) in Guizhou, China. Crop Protection, 181, 106704. https://doi.org/10.1016/j.cropro.2024.106704 [DOI:10.1016/j.cropro.2024.106704.]
4. Arora, H., Sharma, A., Sharma, S., Haron, F. F., Gafur, A., Sayyed, R. Z., & Datta, R. (2021). Pythium damping-off and root rot of Capsicum annuum L.: impacts, diagnosis, and management. Microorganisms, 9(4), 823. https://doi.org/10.3390/microorganisms9040823 [DOI:10.3390/microorganisms9040823.] [PMID] []
5. Babai-Ahary, A., Abrinnia, M., & Heravan, I. M. (2004). Identification and pathogenicity of Pythium species causing damping-off in sugarbeet in northwest Iran. Australasian Plant Pathology, 33, 343-347. https://doi.org/10.1071/AP04038 [DOI:10.1071/AP04038.]
6. Badali, F., Abrinbana, M., Abdollahzadeh, J., & Khaledi, E. (2016). Molecular and morphological taxonomy of Pythium species isolated from soil in West Azarbaijan province (NW Iran). Rostaniha, 17(1), 78-91. [DOI:10.22092/botany.2016.107005]
7. Barboza, E. A., Cabral, C. S., Rossato, M., Martins, F. H. S. R., & Reis, A. (2022). Pythium and Phytopythium species associated with weeds collected in vegetable production fields in Brazil. Letters in Applied Microbiology, 74(5), 796-808. https://doi.org/10.1111/lam.13666 [DOI:10.1111/lam.13666.] [PMID]
8. Bickel, J. T., & Koehler, A. M. (2021). Review of Pythium species causing damping-off in corn. Plant Health Progress, 22(3), 219-225. [DOI:10.1094/PHP-02-21-0046-FI]
9. Brantner, J. R., & Windels, C. E. (1998). Variability in sensitivity to metalaxyl in vitro, pathogenicity, and control of Pythium spp. on sugar beet. Plant Disease, 82(8), 896-899. https://doi.org/10.1094/PDIS.1998.82.8.896 [DOI:10.1094/PDIS.1998.82.8.896.] [PMID]
10. Callan, N. W., Mathre, D. E., & Miller, J. B. (1990). Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh2 sweet corn. Plant Disease, 74 (5), 368-372. https://doi.org/10.1094/PD-74-0368 [DOI:10.1094/PD-74-0368.]
11. Chamswarng, C., & Cook, R. J. (1985). Identification and Comparative Pathogenicity of Pythium Species. Pacific Northwest, 75, 821-827. [DOI:10.1094/Phyto-75-821]
12. Cook, R. J., Sitton, J. W., & Haglund, W. A. (1987). Influence of soil treatments on growth and yield of wheat and implications for control of Pythium root rot. Phytopathology, 77(8), 1192-1198. https://doi.org/10.1094/Phyto-77-1192 [DOI:10.1094/Phyto-77-1192.]
13. Daly, P., Chen, S., Xue, T., Li, J., Sheikh, T. M. M., Zhang, Q., ... & Wei, L. (2021). Dual-transcriptomic, microscopic, and biocontrol analyses of the interaction between the bioeffector Pythium oligandrum and the Pythium soft-rot of ginger pathogen Pythium myriotylum. Frontiers in Microbiology, 12, 765872. https://doi.org/10.3389/fmicb.2021.765872 [DOI:10.3389/fmicb.2021.765872.] [PMID] []
14. Dehghanpour Farashah, S., & Salehzadeh, M. (2021). Situation of Fusarium root and crown rot disease of wheat in Iran. University of Yasouj Plant Pathology Science, 10(1), 97-106. http://dorl.net/dor/20.1001.1.22519270.1399.10.1.7.8. [DOI:10.52547/pps.10.1.97]
15. Dorrance, A. E., Berry, S. A., & Lipps, P. E. (2004). Characterization of Pythium spp. from three Ohio fields for pathogenicity on corn and soybean and metalaxyl sensitivity. Plant Health Progress, 5(1), 10. https://doi.org/10.1094/PHP-2004-0202-01-RS [DOI:10.1094/PHP-2004-0202-01-RS.]
16. Eslahi, M. R. (2012). Fungi associated with root and crown rot of wheat in Khuzestan province, Iran. Journal of Crop Protection, 1(2), 107-113. http://dorl.net/dor/20.1001.1.22519041.2012.1.2.9.2.
17. Gleń-Karolczyk, K., Bolligłowa, E., & Luty, L. (2022). Health parameters of potato tubers under the influence of soil applied bio-preparations and bio-stimulants. Applied Sciences, 12(22), 11593. https://doi.org/10.3390/app122211593 [DOI:10.3390/app122211593.]
18. Harvey, P. R., Australia, V., & Wales, N. S. (2004). Crop rotation could reduce Pythium root rot. Farming Ahead, 154, 38-40. https://ir.bsu.ac.ug//handle/20.500.12284/346.
19. Hebbar, K. P., Martel, M. H., & Heulin, T. (1998). Suppression of pre-and postemergence damping-off in corn by Burkholderia cepacia. European journal of plant pathology, 104, 29-36. https://doi.org/10.1023/A:1008625511924 [DOI:10.1023/A:1008625511924.]
20. Heidari, D., & Salehi, Z. (2013). PCR detection of transgenic maize in Iran on the basis of P35S. Genetic Engineering and Biosafety Journal, 2(2), 111-118. http://dorl.net/dor/20.1001.1.25885073.1392.2.2.3.9.
21. Hering, T. F., Cook, R. J., & Tang, W. H. (1987). Infection of wheat embryos by Pythium species during seed germination and the influence of seed age and soil matric potential. Phytopathology, 77(7), 1104-1108. [DOI:10.1094/Phyto-77-1104]
22. Higginbotham, R. W., Paulitz, T. C., & Kidwell, K. K. (2004). Virulence of Pythium species isolated from wheat fields in eastern Washington. Plant disease, 88(9), 1021-1026. https://doi.org/10.1094/PDIS.2004.88.9.1021 [DOI:10.1094/PDIS.2004.88.9.1021.] [PMID]
23. Hyder, S., Gondal, A. S., Rizvi, Z. F., Atiq, R., Haider, M. I. S., Fatima, N., & Inam-ul-Haq, M. (2021). Biological control of chili damping-off disease, caused by Pythium myriotylum. Frontiers in Microbiology, 12, 587431. https://doi.org/10.3389/fmicb.2021.587431 [DOI:10.3389/fmicb.2021.587431.] [PMID] []
24. Ingram, D. M., & Cook, R. J. (1990). Pathogenicity of four Pythium species to wheat, barley, peas and lentils. Plant Pathology, 39(1), 110-117. https://doi.org/10.1111/j.1365-3059.1990.tb02481.x [DOI:10.1111/j.1365-3059.1990.tb02481.x.]
25. Jie, S. (1995). Studies on pathogenic species of Pythium from spring maize seedlings in Zhejiang Province [China]. Acta Phytophylacica Sinica (China), 22(3).
26. Khodadadi, R., Amirbakhtiar, N., Sorkhilalehloo, B., & Soltani Najafabadi, M. (2023). Identification of conserved salt-responsive genes from bread wheat, barley crops with Arabidopsis based on microarray data. Genetic Engineering and Biosafety Journal, 12(1), 0-0. http://dorl.net/dor/20.1001.1.25885073.1402.12.1.3.7.
27. Kreutzer, W. A., & Durrell, L. W. (1938). Rot of mature tap root of Sugar Beet caused by Pythium butleri. Phytopathology, 28 (7), 512-515. CABI Record Number: 19391100014. [DOI:10.1017/S0007485322000128] [PMID]
28. Liu Y, Vaghefi N, Ades PK, Idnurm A, Ahmed A, Taylor PW. 2023. Globisporangium and Pythium Species Associated with Yield Decline of Pyrethrum (Tanacetum cinerariifolium) in Australia. Plants 12(6): 1361. https://doi.org/10.3390/plants12061361 [DOI:10.3390/plants12061361.] [PMID] []
29. Mahendra Rai, M. R., Ingle, A. P., Priti Paralikar, P. P., Netravati Anasane, N. A., Rajendra Gade, R. G., & Pramod Ingle, P. I. (2018). Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. https://doi.org/10.1007/s00253-018-9145-8 [DOI:10.1007/s00253-018-9145-8.] [PMID]
30. Mao, W., Lewis, J. A., Hebbar, P. K., & Lumsden, R. D. (1997). Seed treatment with a fungal or a bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Disease, 81(5), 450-454. https://doi.org/10.1094/PDIS.1997.81.5.450 [DOI:10.1094/PDIS.1997.81.5.450.] [PMID]
31. McCarter, S. M., & Littrell, R. H. (1970). Comparative pathogenicity of Pythium aphanidcrniatum and Pythium myriotylum to twelve plant species and intraspecific variation in virulence. Phytopathology, 60 (2), 264-268. https://doi.org/10.1094/Phyto-60-264 [DOI:10.1094/phyto-60-264]
32. Middleton, J. T. (1943). The taxonomy, host range and geographic distribution of the genus Pythium. Memoirs of the Torrey Botanical Club, 20(1), 1-171.
33. Mostoufizadeh, G. R., & Banihashemi, Z. A. D. (2005). Identification of soil Pythium species in Fars province of Iran. Phytopathology, 28 (7), 512-515. CABI Record Number: 19391100014. [DOI:10.22099/IJSTS.2005.2786]
34. Mostowfizadeh-Ghalamfarsa, R. (2015). The current status of Pythium species in Iran: challenges in taxonomy. Mycologia Iranica, 2(2), 79-87. [DOI:10.22043/mi.2015.19901.]
35. Nzungize, J., Geps, P., Buruchara, R., Buah, S., Ragama, P., Busogoro, J. P., & Baudoin, J. P. (2011). Pathogenic and molecular characterization of Pythium species inducing root rot symptoms of common bean in Rwanda. African Journal of Microbiology Research, 5 (10), 1169-1181. ISSN 1996-0808. [DOI:10.5897/AJMR10.747]
36. O'sullIvan, E., & Kavanagh, J. A. (1992). Characteristics and pathogenicity of Pythium spp. associated with damping‐off of sugar beet in Ireland. Plant pathology, 41(5), 582-590. https://doi.org/10.1111/j.1365-3059.1992.tb02457.x [DOI:10.1111/j.1365-3059.1992.tb02457.x.]
37. Pankhurst, C. E., McDonald, H. J., & Hawke, B. G. (1995). Influence of tillage and crop rotation on the epidemiology of Pythium infections of wheat in a red-brown earth of South Australia. Soil Biology and Biochemistry, 27(8), 1065-1073. https://doi.org/10.1016/0038-0717(95)00009-4 [DOI:10.1016/0038-0717(95)00009-4.]
38. Pearson, R., & Parkinson, D. (1960). The sites of excretion of ninhydrin-positive substances by broad bean seedlings. Plant and Soil, 13, 391-396. https://doi.org/10.1007/BF01394650 [DOI:10.1007/BF01394650.]
39. Raftoyannis, Y., & Dick, M. W. (2006). Zoospore encystment and pathogenicity of Phytophthora and Pythium species on plant roots. Microbiological Research, 161(1), 1-8. https://doi.org/10.1016/j.micres.2005.04.003 [DOI:10.1016/j.micres.2005.04.003.] [PMID]
40. Rahimian, M. K., & Banihashemi, Z. (1979). A method for obtaining zoospores of Pythium aphanidermatum and their use in determining cucurbit seedling resistance to damping-off. Plant Disease Reporter, 63(8), 658-661. https://irdoi.org/349-365-779-798.
41. Rai, M., Golińska, P., Shende, S., Paralikar, P., Ingle, P., & Ingle, A. P. (2019). Biological control of soft-rot of ginger: Current trends and future prospects. Plant Microbe Interface, 347-367. https://doi.org/10.1007/978-3-030-19831-2_16 [DOI:10.1007/978-3-030-19831-2_16.]
42. Reeves, E. R., Henson, M. S., Sharpe, S. R., & Meadows, I. M. (2022). Evaluation of annual and herbaceous perennial plants for susceptibility to Phytophthora root and crown rot in the Southeastern United States. Journal of Environmental Horticulture, 40(4), 154-163. https://doi.org/10.24266/2573-5586-40.4.154 [DOI:10.24266/2573-5586-40.4.154.]
43. Sañudo S, B., & Jurado D, J. (1990). The presence of the fungus Pythium on maize cultivars in the Sibundoy valley, Putumayo. CABI Record Number: 19922323140.
44. Shahzad, S., Coe, R., & Dick, M. W. (1992). Biometry of oospores and oogonia of Pythium (Oomycetes): the independent taxonomic value of calculated ratios. Botanical Journal of the Linnean Society, 108(2), 143-165. https://doi.org/10.1111/j.1095-8339.1992.tb01638.x [DOI:10.1111/j.1095-8339.1992.tb01638.x.]
45. Shen, J., & Zhang, B. (1995). Studies on pathogenic species of Pythium from spring cropping maize seedlings in Zhejiang province. CABI Record Number: 19961002741.
46. Shurtleff, M. C. (1992). Compendium of Corn Diseases. APS. University of Illinois. Urbana, USA.
47. Stanghellini, M. E., Bretzel, P. V., Olsen, M. W., & Kronland, W. C. (1982). Root rot of sugar beets caused by Pythium deliense. Plant Disease, 66 (9), 857-858. https://doi.org/10.1094/PD-66-857 [DOI:10.1094.pd-66-857.]
48. Subila, K. P., & Suseela Bhai, R. (2020). Pythium deliense, a pathogen causing yellowing and wilt of black pepper in India. New disease reports, 42, 6-6. http://dx.doi.org/10.5197/j.2044-0588.2020.042.006. [DOI:10.5197/j.2044-0588.2020.042.006]
49. Thomas, G. E., Geetha, K. A., Augustine, L., Mamiyil, S., & Thomas, G. (2016). Analyses between reproductive behavior, genetic diversity and Pythium responsiveness in Zingiber spp. reveal an adaptive significance for hemiclonality. Frontiers in Plant Science, 7, 1913. https://doi.org/10.3389/fpls.2016.01913 [DOI:10.3389/fpls.2016.01913.]
50. Van der Plaats-Niterink, A. J. (1981). Monograph of the genus Pythium (Vol. 21, p. 242). Baarn: Centraalbureau voor Schimmelcultures. Studies in Mycology, 21 (1), 242-248. CABI Record Number: 19821379677.
51. Virginia, G., & Robin, B. (2004). Pathogenicity of Pythium species on hosts associated with bean-based cropping system in south western Uganda. http://hdl.handle.net/11071/3424.
52. Wu, Q. N., Liang, K. G., Zhu, X. Y., Wang, X. M., Jin, J. T., & Wang, G. Y. (1989). Isolation and identification of the pathogen of maize stalk rot in Beijing and Zhejiang. CABI Record Number: 19922320687.
53. Yanar, Y., Lipps, P. E., & Deep, I. W. (1997). Effect of soil saturation duration and soil water content on root rot of maize caused by Pythium arrhenomanes. Plant disease, 81(5), 475-480. [DOI:10.1094/PDIS.1997.81.5.475]
54. Zidack, N. K., Jacobsen, B. J., Stinson, A. M., & Strobel, G. A. (2001). Mycofumigation: A novel alternative to methyl bromide. In Proc. 2001 Annu. Int. Conf. Methyl Bromide Alternatives Emissions Reductions. USEPA/USDA, Washington, DC (pp. 36-1).
Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kiyani T, Minassian V, Mousavi Jorf S A, Dehghanpour Farashah S. Investigation of root and crown tissue death of Beta vulagris, Triticum aestivum and Zea mays by different Pythium spp. in laboratory conditions. gebsj 2024; 13 (2) : 1
URL: http://gebsj.ir/article-1-498-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 2 (11-2024) Back to browse issues page
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4718