1. Abou-Douh, A.M. (2002). New withanolides and other constituents from the fruit of Withania somnifera, Medicinal Chemistry, 6: 267-276. doi:10.1002/1521-4184(200208)335.
https://doi.org/10.1002/1521-4184(200208)335:6<267::AID-ARDP267>3.0.CO;2-E [ DOI:10.1002/1521-4184(200208)335:63.0.CO;2-E] 2. Archana, R., Namasivayam, A. (1999). Antistressor effect of Withania somnifera. Journal of Ethnopharmacology, 64: 91-93. doi: 10.1016/S0378-8741(98)00107-X. [ DOI:10.1016/S0378-8741(98)00107-X] 3. Arora, S., Dhillon, S., Rani, G., & Nagpal, A. (2004). The in vitro antibacterial/synergistic activities of Withania somnifera extracts. Fitoterapia, 75: 385-388. doi:10.1016/j.fitote.2004.01.002. [ DOI:10.1016/j.fitote.2004.01.002] 4. Atta-Ur-Rahman, Shabbir.M., Yousaf, M., Qureshi, S., Shahwar, D., Naz, A., & Choudhary, I. (1999). Three withanolides from Withania coagulans, Phytochemistry, 52: 1361-1364. doi:10.1016/S0031-9422(99)00416-1. [ DOI:10.1016/S0031-9422(99)00416-1] 5. Atta-Ur-Rahman, Shahwar. D., Naz, A., & Choudhary, I. (2003). Withanolides from Withania coagulans, Phytochemistry, 63: 387-390. doi:10.1016/S0031-9422(02)00727-6. [ DOI:10.1016/S0031-9422(02)00727-6] 6. Aziz-khajeh, A., Dorani, E., & Aharizad, S. (2018). Effects of Agrobacterium rhizogenes strains and explants on induction of hair root in Physalis alkekengi. Genetic Engineering and Biosafety Journal; 7 (1) :33-40. dor: 20.1001.1.25885073.1397.7.1.2.1. 7. Baldi, A., Singh, D., & Dixit, V.K. (2008). Dual elicitation for improved production of withaferin A by cell suspension cultures of Withania somnifera. Applied Biochemistry and Biotechnology, 151: 556-564. doi: 10.1007/s12010-008-8231-2. [ DOI:10.1007/s12010-008-8231-2] 8. Bandyopadhyay, M., Jha, S., & Tepfer, D. (2007). Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell. 599-609. doi: 10.1007/s00299-006-0260-0. [ DOI:10.1007/s00299-006-0260-0] 9. Barba-Espín, G., Chen, S.T., Agnolet, S., Hegelund, J.N., Stanstrup, J., & Christensen, J.H. (2020). Ethephon-induced changes in antioxidants and phenolic compounds in anthocyanin-producing black carrot hairy root cultures. J. Exp. Bot. 7030-7045. doi: 10.1093/jxb/eraa376. [ DOI:10.1093/jxb/eraa376] 10. Bigdeli, M., Sadat-Noori, S.A., Izady-Darbandi, A., Lotfi, M., & Bahmankar, M. (2021). Optimizing the induction of hairy roots in the medicinal plant broccoli. The 12th National Conference and the 4th International Biotechnology Conference of the Islamic Republic of Iran. (In Persian with English abstract). 11. Estaki, M., & Davazdah-emami, S. (2012). JinSing, the secret of immortality, health and intelligence. Nosooh. P:224. (In Persian). doi: 615.32384. 12. Hasanlou, T., Rezazadeh, S.h., & Rahnema, H. (2008). Hairy roots are a source for the production of medicinal compounds. Journal of Medicinal Plants. dor: 20.1001.1.2717204.2009.8.29.1.2. 13. Jayaprakasam, B., Zhang, Y., Seeram, N., & Nair, M. (2003). Growth inhibition of tumor cell lines by withanolides from Withania somnifera leaves. Life Science, 74:125-132. doi: 10.1016/j.lfs.2003.07.007. [ DOI:10.1016/j.lfs.2003.07.007] 14. Kapoor, L.D. (2001). Handbook of Ayurvedic Medicinal Plants. CRC Press, London, UK, pp. 337-338. doi:10.1201/9780203719473. [ DOI:10.1201/9780203719473] 15. Kim, S., Yu, J.S., Lee, J.Y., Choi, S.U., Lee, J., & Kim, K.H. (2019). Cytotoxic withanolides from the roots of Indian Ginseng (Withania somnifera). J. Nat. Prod. 82, 765-773. doi:10.1021/acs.jnatprod.8b00665. [ DOI:10.1021/acs.jnatprod.8b00665] 16. Mahmoudi, M., Sadat-Noori, S.A., Ebrahimi, M., & Bahmankar, M. (2023). Optimization of induction of hairy roots in Perilla. Genetic Engineering and Biosafety Journal; 12 (1). dor: 20.1001.1.25885073.1402.12.1.4.8. 17. Majumdar, S., Garai, S., & Jha, S. (2011). Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Reports 30(5):941-954. doi:10.1007/s00299-011-1035-9. [ DOI:10.1007/s00299-011-1035-9] 18. Maniatis, T., Fritsch, E.F., & Sambrook, J. (1982). Molecular Cloning, a Laboratory Manual. Cold Spring Harbour Laboratory, New York, USA. doi: 10.1016/0307-4412(83)90068-7. [ DOI:10.1016/0307-4412(83)90068-7] 19. Maroufi, A., & Majdi, M. (2015). Assessment of hairy roots induction of the medicinal plant Alecost (Tanacetum balsamita L.) using Agrobacterium rhizogenes. Genetic Engineering and Biosafety Journal. 4 (2) :103-111. dor: 20.1001.1.25885073.1394.4.2.2.2. 20. Mirjalili, M.H., Fakhr-Tabatabaei, S.M., Alizadeh, H., Ghassempour, A., & Mirzajani, F. (2009). Genetic and withaferin A analysis of Iranian natural populations of Withania somnifera and W. coagulans by RAPD and HPTLC. Natural Product communications, 4: 337-346. doi:10.1177/1934578X0900400307. [ DOI:10.1177/1934578X0900400307] 21. Mirjalili, M.H., Moyano, E., Bonfill, M., Cusido, R.M., & Palazon, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14: 2373-2393. doi: 10.3390/molecules14072373. [ DOI:10.3390/molecules14072373] 22. Mirzajani, F., Ghassempour, A., Jalali-Heravi, M., & Mirjalili, M.H. (2010). Optimisation of a microwave-assisted method for extracting withaferin A from Withania somnifera Dunal. using central composite design, Phytochemical Analysis, 21 (6). 544-549. doi:10.1002/pca.1230. [ DOI:10.1002/pca.1230] 23. Mishra, L.C., Singh, B.B., Dagenais, S. (2000). Scientific basis for therapeutic use of Withania somnifera (Ashwagandha): a review. Alternative Medicine Review, 5: 334-346. PMID: 10956379. 24. Moradi, N., Sadat-Noori, S.A., Fadavi, A., Mortazavian, S.M., Pakdin-Parizi , A. (2021). Analysis efficiency of Iranian Ajowan ecotypes on hairy root production mediated by different Agrobacterium rhizogenesis strains. Iranian Journal of Genetics and Plant Breeding, 10(1): 117-127. doi: 10.30479/IJGPB.2022.17488.1325. 25. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 15 (3), 473-497. doi:10.1111/ j.1399 3054. [ DOI:10.1111/j.1399-3054.1962.tb08052.x] 26. Murthy, H.N., Dijkstra, C., Anthony, P., White, D.A., Davey, M.R., Power, J.B., Hahn, E.J., & Paek, K.Y. (2008). Establishment of Withania somnifera hairy root cultures for the production of withanolide A. Journal of Integration and Plant Biology. 975-81. doi:10.1111/j.1744-7909. [ DOI:10.1111/j.1744-7909.2008.00680.x] 27. Owais, M., Sharad, K.S., Shehbaz, A., & Saleemuddin, M. (2005). Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine, 12: 229-235. doi: 10.1016/j.phymed.2003.07.012 [ DOI:10.1016/j.phymed.2003.07.012] 28. Rai, M., Jogee, P.S., Agarkar, G., Dos-Santos, C.A. (2016). Anticancer activities of Withania somnifera: Current research, formulations, and future perspectives. Pharm. Biol. 54. 189-197. doi: 10.3109/13880209.2015.1027778. [ DOI:10.3109/13880209.2015.1027778] 29. Sangwan, R.S., Chaurasiya, N.D., Lal, P., Misra, L., Uniyal, G.C., Tuli, R., & Sagwan, N.C. (2007). Whitanolide A bioregeneration in in vitro shoot cultures of Ashwagandha (Withania somnifera Dunal), a main medicinal plant in Ayurveda. Chemical and Pharmaceutical Bulletin 55: 1371-1375. doi: 10.1248/cpb.55.1371. [ DOI:10.1248/cpb.55.1371] 30. Tripathi, L., Tripathi, J.N. (2003). Role of biotechnology in medicinal plants. Tropical J. of Pharmaceutical Res. 2: 243 - 53. doi: 10.4314/tjpr.v2i2.14607. [ DOI:10.4314/tjpr.v2i2.14607] 31. Wawrosch, C., & Zotchev, S.B. (2021). Production of bioactive plant secondary metabolites through in vitro technologies-status and outlook. Appl Microbiol Biotechnol. 105(18):6649-6668. doi: 10.1007/s00253-021-11539-w. [ DOI:10.1007/s00253-021-11539-w] 32. Yousefian, Z., Hosseini, B., Rezadoost, H., Palazón, J., & Mirjalili, M.H. (2018). Production of the anticancer compound withaferin a from genetically transformed hairy root cultures of Withania somnifera. Natural Product Communications.13(8): 1934578X1801300806. doi:10.1177/1934578X1801300806. [ DOI:10.1177/1934578X1801300806]
|