1. Bahramsari N., M.R. Zamani and M. Motallebi. (2005). β-1,3-glucanase production in Trichoderma isolates. Iranian Journal of Biology. 18(3): 261-271. (In Persian) 2. Bai, L., Kim, J., Son, K.-H., Shin, D.-H., Ku, B.-H., Kim, D. Y., & Park, H.-Y. (2021). Novel Anti-Fungal d-Laminaripentaose-Releasing Endo-β-1,3-glucanase with a RICIN-like Domain from Cellulosimicrobium funkei HY-13. Biomolecules, 11(8), Article 8. [ DOI:10.3390/biom11081080] 3. Brazil, C., Oliveira, D. F. de, Duarte, R. A., Galo, J. M., Lucchetta, L., Santos, E. da C. dos, & Hashimoto, E. H. (2019). β-Glucanase Addition in Brewing Malt Produced by Reduced Time of Germination. Brazilian Archives of Biology and Technology, 62, e19180315. [ DOI:10.1590/1678-4324-2019180315] 4. Butler, M., & Moo-Young, M. (2011). Comprehensive biotechnology (2nd ed). Elsevier. http://public.eblib.com/choice/publicfullrecord.aspx?p=858607 5. Cervone, F., De Lorenzo, G., Degrà, L., Salvi, G., & Bergami, M. (1987). Purification and Characterization of a Polygalacturonase-Inhibiting Protein from Phaseolus vulgaris L. 1. Plant Physiology, 85(3), 631-637. [ DOI:10.1104/pp.85.3.631] 6. Claus, H., & Mojsov, K. (2018). Enzymes for Wine Fermentation: Current and Perspective Applications. Fermentation, 4(3), Article 3. [ DOI:10.3390/fermentation4030052] 7. Du, B., Meenu, M., Liu, H., & Xu, B. (2019). A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. International Journal of Molecular Sciences, 20(16), Article 16. [ DOI:10.3390/ijms20164032] 8. Favaron, F. (2001). Gel detection of Allium porrum polygalacturonase-inhibiting protein reveals a high number of isoforms. Physiological and Molecular Plant Pathology, 58(6), 239-245. [ DOI:10.1006/pmpp.2001.0333] 9. Gallagher, S. R. (2012). GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press. 10. Gavanji, S., & Larki, B. (2017). Comparative effect of propolis of honey bee and some herbal extracts on Candida albicans. Chinese Journal of Integrative Medicine, 23(3), 201-207. [ DOI:10.1007/s11655-015-2074-9] 11. Ghazavi Esfahani, M., Yousefi Kopaei, F., & Mirtalebi, M. (2023). Effects of Some Isolates of Trichoderma spp. And Rhizobacteria in Control of the Causal Agent of Cantaloupe Fusarium Wilt (Fusarium oxysporum f. Sp. Melonis). Gebsj, 12(1), 0-0. 20.1001.1.25885073.1402.12.1.11.5 (In Persian). 12. Gilani, S., Gracia, M. I., Barnard, L., Dersjant-Li, Y., Millán, C., & Gibbs, K. (2021). Effects of a xylanase and beta-glucanase enzyme combination on growth performance of broilers fed maize-soybean meal-based diets. Journal of Applied Animal Nutrition, 9(2), 77. [ DOI:10.3920/JAAN2021.0004] 13. Häkkinen, S. T., Reuter, L., Nuorti, N., Joensuu, J. J., Rischer, H., & Ritala, A. (2018). Tobacco BY-2 media component optimization for a cost-efficient recombinant protein production. Frontiers in Plant Science, 9, 45. [ DOI:10.3389/fpls.2018.00045] 14. Józefiak, D., Rutkowski, A., Jensen, B. B., & Engberg, R. M. (2006). The effect of -glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. British Poultry Science, 47(1), 57-64. [ DOI:10.1080/00071660500475145] 15. Karunaratne, N. D., Classen, H. L., Ames, N. P., Bedford, M. R., & Newkirk, R. W. (2022). Effects of diet hulless barley and beta-glucanase levels on ileal digesta soluble beta-glucan molecular weight and carbohydrate fermentation in laying hens. Poultry Science, 101(5), 101735. [ DOI:10.1016/j.psj.2022.101735] 16. Kourkoumpetis, T., Manolakaki, D., Velmahos, G. C., Chang, Y., Alam, H. B., De Moya, M. M., Sailhamer, E. A., & Mylonakis, E. (2010). Candida infection and colonization among non-trauma emergency surgery patients. Virulence, 1(5), 359-366. [ DOI:10.4161/viru.1.5.12795] 17. Marco, J. L. de, & Felix, C. R. (2007). Purification and characterization of a beta-Glucanase produced by Trichoderma harzianum showing biocontrol potential. Brazilian Archives of Biology and Technology, 50, 21-29. [ DOI:10.1590/S1516-89132007000100003] 18. Miyanishi, N., Inaba, Y., Okuma, H., Imada, C., & Watanabe, E. (2004). Amperometric determination of laminarin using immobilized β-1,3-glucanase. Biosensors & Bioelectronics, 19, 557-562. [ DOI:10.1016/S0956-5663(03)00253-7] 19. Mohamadkhani, M., Mirakhorli, N., Emamzadeh, R., & Khajali, fariborz. (2018). Expression of β (1-3)(1-4) glucanase gene in Lactococcus lactis to produce an animal probiotic feed. Gebsj, 6(2), 213-221. (In Persian) 20. Mohammadzadeh, R., Motalebi, M., Zaman,i M.R., Bidmeshkipour, A. (2008). IDENTIFICATION, CLONING AND STRUCTURE ANALYSIS OF β, 3 GLUCANASE (BGNL) GENE FROM TRICHODERMA VIRENS (10). IRANIAN JOURNAL OF BIOLOGY, 21, 483-492. (In Persian) 21. Murphy, E. J., Rezoagli, E., Major, I., Rowan, N., & Laffey, J. G. (2021). β-Glucans. Encyclopedia, 1(3), Article 3. [ DOI:10.3390/encyclopedia1030064] 22. Saito, H., Misaki, A., & Harada, T. (1968). A Comparison of the Structure of Curdlan and Pachyman. Agricultural and Biological Chemistry, 32(10), 1261-1269. [ DOI:10.1271/bbb1961.32.1261] 23. Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual. CSHL Press. 24. Usoltseva, R. V., Belik, A. A., Kusaykin, M. I., Malyarenko, O. S., Zvyagintsevа, T. N., & Ermakova, S. P. (2020). Laminarans and 1,3-β-D-glucanases. International Journal of Biological Macromolecules, 163, 1010-1025. [ DOI:10.1016/j.ijbiomac.2020.07.034]
|