1. Breidt, F. (2004). A Genomic Study of Leuconostoc mesenteroides and the Molecular Ecology of Sauerkraut Fermentations. Journal of Food Science, 69(1), 30-32. doi: 10.1111/j.1365-2621.2004.tb17874.x [ DOI:10.1111/j.1365-2621.2004.tb17874.x] 2. Chen, Y.S., Wang, L.T., Wu, Y.C., Mori, K., Tamura, T., Chang, C.H., et al. (2020). Leuconostoc litchii sp. nov, a novel lactic acid bacterium isolated from lychee. International Journal of Systematic and Evolutionary Microbiology, 70(3), 1585-1590. doi: 10.1099/ijsem.0.003938 [ DOI:10.1099/ijsem.0.003938] 3. Cogan, T.M. & Jordan, K.N. (1994). Metabolism of Leuconostoc Bacteria. Journal of Dairy Science 77(9):2704-2717. doi: 10.3168/jds.S0022-0302(94)77213-1 [ DOI:10.3168/jds.S0022-0302(94)77213-1] 4. Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., et al. (2018). CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Research, 46 (W1), 246-251. doi: 10.1093/nar/gky425 [ DOI:10.1093/nar/gky425] 5. Crawley, A.B., Henriksen, E.D., Stout, E., Brandt, K. & Barrangou, R. (2018). Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Scientific Reports, 8, 1-12. doi: 10.1038/s41598-018-29746-3 [ DOI:10.1038/s41598-018-29746-3] 6. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. (2004). WebLogo: a sequence logo generator. Genome Research, 14 (6), 1188-1190. doi: 10.1101/ gr.849004 [ DOI:10.1101/gr.849004] 7. Grissa, I., Vergnaud, G. & Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172. doi: 10.1186/1471-2105-8-172 [ DOI:10.1186/1471-2105-8-172] 8. Gruber, A.R., Lorenz, R., Bernhart, S.H., Neuböck, R. & Hofacker, I.L. (2008). The Vienna RNA websuite. Nucleic Acids Research, 36, 70-74. doi: 10.1093/nar/gkn188 [ DOI:10.1093/nar/gkn188] 9. Held, N.L., Herrera, A., Cadillo-Quiroz, H. and Whitaker, R.J. (2010). CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS One, 5, e12988. doi: 10.1371/journal.pone.0012988 [ DOI:10.1371/journal.pone.0012988] 10. Hidalgo-Cantabrana, C., Crawley, A.B., Sanchez, B. and Barrangou, R. (2017). Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum. Frontiers in Microbiology, 8, 1851. doi: 10.3389/fmicb.2017.01851 [ DOI:10.3389/fmicb.2017.01851] 11. Hofacker, I.L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31, 3429-3431. doi: 10.1093/nar/gkg599 [ DOI:10.1093/nar/gkg599] 12. Horvath, P., Romero, D.A., Coûté-Monvoisin, A.C., Richards, M., Deveau, H., Moineau, S., et al. (2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology, 190(4), 1401-1412. doi: 10.1128/jb.01415-07 [ DOI:10.1128/JB.01415-07] 13. Ilıkkan, Ö.K. (2021). CRISPR-Cas systems and anti-repeat sequences of Lactobacillus curvatus, Lactobacillus graminis, Lactobacillus fuchuensis, and Lactobacillus sakei genomes. Microbiology Socity of Korea, 57(1), 12-22. doi: 10.7845/kjm.2021.0093 14. Jeon, H.H., Kim, K.H., Chun, B.H., Ryu, B.H., Han, N.S. & Jeon, C.O. (2017). A proposal of Leuconostoc mesenteroides subsp. jonggajibkimchii subsp. nov. And reclassification of Leuconostoc mesenteroides subsp. suionicum (GU et al., 2012) as Leuconostoc suionicum sp. nov. Based on complete genome sequences. International Journal of Systematic and Evolutionary Microbiology, 67(7), 2225-2230. doi: 10.1099/ijsem.0.001930 [ DOI:10.1099/ijsem.0.001930] 15. Khan, Z., Alim, Z., Khan, A.A, Sattar, T., Zeshan, A., Saboor, T., et al. (2022). History and Classification of CRISPR/Cas System. In A. Ahmad, S.H. Khan, & Z. Khan (Ed.). The CRISPR/Cas Tool Kit for Genome Editing (pp. 29-52). Singapore: Springer. doi: 10.1007/978-981-16-6305-5_2 [ DOI:10.1007/978-981-16-6305-5_2] 16. Kim, D. & Robyt, J.F. (1995). Production, selection and characteristic of mutants of leuconostoc mesenteroides b-742 constitutive for dextran. Enzyme and microbial Technology, 17(8), 689-95. doi: 10.1016/0141-0229(94)90086-8 [ DOI:10.1016/0141-0229(94)90086-8] 17. Koonin, E.V. & Makarova, K.S. (2013). CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA biology, 10(5), 679-686. doi: 10.4161/rna.24022 [ DOI:10.4161/rna.24022] 18. Koonin, E.V., Makarova, K.S. & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67-78. doi: 10.1016/j.mib.2017.05.008 [ DOI:10.1016/j.mib.2017.05.008] 19. Levin, B.R., Moineau, S., Bushman, M. & Barrangou, R. (2013). The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS Genetics, 9(3), e1003312. doi: 10.1371/journal.pgen.1003312 [ DOI:10.1371/journal.pgen.1003312] 20. Long, J., Xu, Y., Ou, L., Yang, H., Xi, Y., Chen, S., et al. (2019). Diversity of CRISPR-Cas system in Clostridium perfringen. Molecular Genetics and Genomics, 294, 1263-1275. doi: 10.1007/s00438-019-01579-3 [ DOI:10.1007/s00438-019-01579-3] 21. Lonvaud funnel, A. (1999). Leuconostoc. In C.A. Batt & R.K. Robinson (Ed.). Encyclopedia of Food Microbiology (pp. 455-465). Amsterdam, Elsevier: Academic Press. doi: 10.1016/B978-0-12-384730-0.00416-X [ DOI:10.1016/B978-0-12-384730-0.00416-X] 22. Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., et al. (2011). Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 9(6), 467-477. doi: 10.1038/nrmicro2577 [ DOI:10.1038/nrmicro2577] 23. Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J., et al. (2020). Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67-83. doi: 10.1038/s41579-019-0299-x [ DOI:10.1038/s41579-019-0299-x] 24. Marraffini, L.A. & Sontheimer, E.J. (2010). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Reviews Genetics, 11(3), 181-190. doi: 10.1038/nrg2749 [ DOI:10.1038/nrg2749] 25. Martinez-Murcia, A.I. & Collins, M.D. (1990). A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S rRNA. FEMS Microbiology Letters, 70(1), 73-83. doi: 10.1016/0378-1097(90)90106-z [ DOI:10.1016/0378-1097(90)90106-Z] 26. Martinez-Murcia, A., Harland, N.M. & Collins, M.D. (1991). A phylogenetic analysis of an atypical leuconostoc: description of Leuconostoc fal/ax spp. nov. FEMS Microbiology Letters, 66(1), 55-59. doi: 10.1016/0378-1097(91)90420-f [ DOI:10.1016/0378-1097(91)90420-F] 27. Panahi, b., Majidi, M. & Hejazi, M.A. (2022). Genome Mining Approach Reveals the Occurrence and Diversity Pattern of Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Systems in Lactobacillus brevis Strains. Frontiers in Microbiology, 13, 911706. doi: 10.3389/fmicb.2022.911706 [ DOI:10.3389/fmicb.2022.911706] 28. Riesenberg, S., Helmbrecht, N., Kanis, P., Maricic, T. & Pääbo, S. (2022). Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nature Communications, 13(1), 1-8. doi: 10.1038/s41467-022-28137-7 [ DOI:10.1038/s41467-022-28137-7] 29. Rossi, C.C., Souza-Silva, T., Araújo-Alves, A.V. & Giambiagi-deMarval, M. (2017). CRISPR-Cas systems features and the gene-reservoir role of coagulasenegative Staphylococci. Frontiers in Microbiology, 8, 1545. doi: 10.3389/fmicb.2017.01545 [ DOI:10.3389/fmicb.2017.01545] 30. Rostampour, M., Masoomi, R., Nami, Y. & Panahi, B. (2022). A Review of Anti-Phage Systems in Lactic Acid Bacteria. Journal of BioSafety 15(2): 37-54. doi: 20.1001.1.27170632.1401.15.2.8.4 [In persian] 31. Sultan, Q., Ashraf, S., Munir, A., Khan, S.H., Munawar, N., Abd-Elsalam, K.A. & Ahmad, A. (2022). Beyond Genome Editing: CRISPR Approaches. In: A. Ahmad, S. Habibullah Khan & Z. Khan (Ed.). The CRISPR/Cas Tool Kit for Genome Editing (pp. 187-218). Singapore: Springer. doi: 10.1007/978-981-16-6305-5 [ DOI:10.1007/978-981-16-6305-5] 32. Van Belkum, A., Soriaga, L.B., LaFave, M.C., Akella, S., Veyrieras, J.B., Barbu, E.M., et al. (2015). Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio, 6(6), e01796-15. doi: 0.1128/mBio.01796-15 [ DOI:10.1128/mBio.01796-15] 33. Van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M. & Brouns, S.J. (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences, 34(8), 401-407. doi: 10.1016/j.tibs.2009.05.002 [ DOI:10.1016/j.tibs.2009.05.002] 34. Yang, D. & Woese, C.R. (1989). Phylogenetic structure of the "Leuconostocs": an interesting case of a rapidly evolving organism. Systematic and Applied Microbiology, 12(2), 145-149. doi: 10.1016/S0723-2020(89)80005-0 [ DOI:10.1016/S0723-2020(89)80005-0] 35. Yang, L., Li, W., Ujiroghene, O.J., Yang, Y., Lu, J., Zhang, S, et al. (2020). Occurrence and Diversity of CRISPR Loci in Lactobacillus casei Group. Frontiers in Microbiology, 11: 624. doi: 10.3389/fmicb.2020.00624 Beijerinck 1901, and :union: of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782-2858. doi: 10.1099/ijsem.0.004107 [ DOI:10.1099/ijsem.0.004107]
|