[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
::
::
شماره‌های چاپ شده

فایل لیست داوران مقالات 

دوره چهاردهم سال 1404
شماره اول
شماره دوم

دوره سیزدهم سال 1403
شماره اول
شماره دوم

دوره دوازدهم سال 1402
شماره اول
شماره دوم

دوره یازدهم سال 1401
شماره اول
شماره دوم
دوره دهم سال 1400
شماره اول
شماره دوم
دوره نهم سال 1399
شماره اول
شماره دوم
دوره هشتم سال 1398
شماره اول
شماره دوم

دوره هفتم سال 1397
دوره ششم سال 1396
دوره پنجم سال 1395
دوره چهارم سال 1394
دوره سوم سال 1393
دوره دوم سال 1392
دوره اول سال 1391
..
راهنمای نگارش
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 13، شماره 1 - ( 3-1403 ) ::
جلد 13 شماره 1 صفحات 112-100 برگشت به فهرست نسخه ها
کاربرد تصویربرداری فراطیفی در بیماری‌شناسی گیاهی
نرجس ملکی ، داود کولیوند*
گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه زنجان، ایران ، d.koolivand@gmail.com
چکیده:   (1568 مشاهده)
سالانه بخش زیادی از محصولات کشاورزی به دلیل تنش­های زیستی و غیرزیستی از بین می­رود و شناسایی دقیق بیماری‌های گیاهی جهت حفاظت از گیاه در تولید محصول بسیار مهم است. از آنجایی‌که روش‌های تشخیصی آزمایشگاهی زمان‌بر هستند و برای مقیاس بزرگ ایده‌آل نیستند، روش‌های کشاورزی مدرن با رویکردهای جدید توانایی شناسایی زودهنگام بیماری قبل از ظهور علائم را دارند و فرصتی برای مداخله جهت کنترل یا جلوگیری از گسترش آلودگی قبل از آلوده‌شدن یا آسیب‌دیدن کل محصولات را فراهم می­کنند. فناوری تصویربرداری فراطیفی یکی از این روش‌هاست که به‌عنوان یک فناوری سنجش سریع و غیرمخرب، نتایج قابل‌توجهی در شناسایی بیماری­ها و تنش‌های گیاهی به دست آورده است. در این تکنیک از سنسورها و بسترهای مختلف استفاده می­شود. این فناوری طیف‌سنجی نوری و روش‌های آنالیز تصویر را ترکیب و امکان ارزیابی هم‌زمان مولفه­های فیزیولوژیکی و ریخت شناختی را فراهم می‌کند. این مقاله به اصل فناوری تصویربرداری فراطیفی، اکتساب تصویر، پیش‌پردازش، مدل‌سازی و تجزیه ‌و تحلیل داده­های فراطیفی، همچنین کاربرد این فناوری در بیماری‌شناسی گیاهی می‌پردازد.
واژه‌های کلیدی: پلتفرم های تصویربرداری، دوربین های فراطیفی، شاخص های پوشش گیاهی، یادگیری ماشین
متن کامل [PDF 838 kb]   (204 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: تخصصی متفرقه
دریافت: 1402/12/15 | پذیرش: 1403/6/23 | انتشار: 1403/6/29
فهرست منابع
1. Abdulridha, J., Ampatzidis, Y., Kakarla, S.C., & Roberts, P. (2020). Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agriculture, 21 (5), 955-978. [DOI:10.1007/s11119-019-09703-4]
2. Abdulridha, J., Batuman, O., & Ampatzidis, Y. (2019). UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sensing, 11 (11), 1373. [DOI:10.3390/rs11111373]
3. Alisaac, E., Behmann, J., Rathgeb, A., Karlovsky, P., Dehne, H.-W., & Mahlein, A.-K. (2019). Assessment of Fusarium infection and mycotoxin contamination of wheat kernels and flour using hyperspectral imaging. Toxins, 11 (10), 556. [DOI:10.3390/toxins11100556]
4. Arjoune, Y., Sugunaraj, N., Peri, S., Nair, S.V., Skurdal, A., Ranganathan, P., & Johnson, B. (2022). Soybean cyst nematode detection and management: a review. Plant Methods, 18 (1), 1-39. [DOI:10.1186/s13007-022-00933-8]
5. Ashourloo, D., Aghighi, H., Matkan, A.A., Mobasheri, M.R., & Rad, A.M. (2016). An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE Journal of selected topics in applied earth observations and remote sensing, 9 (9), 4344-4351. [DOI:10.1109/JSTARS.2016.2575360]
6. Astani, M., Hasheminejad, M., & Vaghefi, M. (2022). A diverse ensemble classifier for tomato disease recognition. Computers Electronics in Agriculture, 198107054. [DOI:10.1016/j.compag.2022.107054]
7. Atherton, D., Choudhary, R., & Watson, D. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants prior to visual disease symptoms. In: 2017 ASABE Annual International Meeting, 2017. American Society of Agricultural and Biological Engineers, p 1. http://dx.doi.org/10.13031/aim.201701010 [DOI:10.13031/aim.201701010]
8. Bendel, N., Backhaus, A., Kicherer, A., Köckerling, J., Maixner, M., Jarausch, B., Biancu, S., Klück, H.-C., Seiffert, U., Voegele, R.T., & Töpfer, R. (2020). Detection of Two Different Grapevine Yellows in Vitis vinifera Using Hyperspectral Imaging. Remote Sensing, 12 (24), 4151. [DOI:10.3390/rs12244151]
9. Bohnenkamp, D., Kuska, M., Mahlein, A.K., & Behmann, J. (2019). Hyperspectral signal decomposition and symptom detection of wheat rust disease at the leaf scale using pure fungal spore spectra as reference. Plant Pathology, 68 (6), 1188-1195. [DOI:10.1111/ppa.13020]
10. Brdar, S., Panić, M., Hogeveen-van Echtelt, E., Mensink, M., Grbović, Ž., Woltering, E., & Chauhan, A. (2021). Predicting sensitivity of recently harvested tomatoes and tomato sepals to future fungal infections. Scientific Reports, 11 (1), 1-17. [DOI:10.1038/s41598-021-02302-2]
11. Cheshkova, A. (2022). A review of hyperspectral image analysis techniques for plant disease detection and identif ication. Vavilov Journal of Genetics and Breeding, 26 (2), 202-213. [DOI:10.18699/VJGB-22-25]
12. Gašparović, M. (2020) Urban growth pattern detection and analysis. In: Urban Ecology. Elsevier, pp 35-48. [DOI:10.1016/B978-0-12-820730-7.00003-3]
13. Guo, A., Huang, W., Dong, Y., Ye, H., Ma, H., Liu, B., Wu, W., Ren, Y., Ruan, C., & Geng, Y. (2021). Wheat yellow rust detection using UAV-based hyperspectral technology. Remote Sensing, 13 (1), 123. [DOI:10.3390/rs13010123]
14. Guo, L., Zhang, H., Shi, T., Chen, Y., Jiang, Q., & Linderman, M. (2019). Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma, 33732-41. [DOI:10.1016/j.geoderma.2018.09.003]
15. Ha, J.G., Moon, H., Kwak, J.T., Hassan, S.I., Dang, M., Lee, O.N., & Park, H.Y. (2017). Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles. Journal of Applied Remote Sensing, 11 (4), 042621-042621. [DOI:10.1117/1.JRS.11.042621]
16. Halicek, M., Fabelo, H., Ortega, S., Callico, G.M., & Fei, B. (2019). In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer. Cancers, 11 (6), 756. [DOI:10.3390/cancers11060756]
17. Hruska, R., Mitchell, J., Anderson, M., & Glenn, N.F. (2012). Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle. Remote Sensing, 4 (9), 2736-2752. [DOI:10.3390/rs4092736]
18. Hu, Y., Chang, J., Li, Y., Zhang, W., Lai, X., & Mu, Q. (2023). High Zoom Ratio Foveated Snapshot Hyperspectral Imaging for Fruit Pest Monitoring. Journal of Spectroscopy, 2023. [DOI:10.1155/2023/2286867]
19. Huang, Y., Feng, G., Tewolde, H., & Shankle, M.W. (2023). Remote Sensing from Different Sources for Crop Growth Monitoring in the Area of the Lower Northern Mississippi. Challenges, 14 (1), 12. [DOI:10.3390/challe14010012]
20. Izzo, R.R., Lakso, A.N., Marcellus, E.D., Bauch, T.D., Raqueño, N.G., & van Aardt, J. An initial analysis of real-time sUAS-based detection of grapevine water status in the Finger Lakes Wine Country of Upstate New York. In: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV, 2019. SPIE, pp 276-293. [DOI:10.1117/12.2518762]
21. Jang, G., Kim, J., Yu, J.-K., Kim, H.-J., Kim, Y., Kim, D.-W., Kim, K.-H., Lee, C.W., & Chung, Y.S. (2020). Cost-effective unmanned aerial vehicle (UAV) platform for field plant breeding application. Remote Sensing, 12 (6), 998. [DOI:10.3390/rs12060998]
22. Jarmer, T. (2013). Spectroscopy and hyperspectral imagery for monitoring summer barley. International journal of remote sensing, 34 (17), 6067-6078. [DOI:10.1080/01431161.2013.793871]
23. Jiang, X., Luo, S., Ye, Q., Li, X., & Jiao, W. (2022). Hyperspectral Estimates of Soil Moisture Content Incorporating Harmonic Indicators and Machine Learning. Agriculture, 12 (8), 1188. [DOI:10.3390/agriculture12081188]
24. Khan, I.H., Liu, H., Li, W., Cao, A., Wang, X., Liu, H., Cheng, T., Tian, Y., Zhu, Y., & Cao, W. (2021). Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat. Remote Sensing, 13 (18), 3612. [DOI:10.3390/rs13183612]
25. Kuska, M.T., Heim, R.H., Geedicke, I., Gold, K.M., Brugger, A., & Paulus, S. (2022). Digital plant pathology: a foundation and guide to modern agriculture. Journal of Plant Diseases and Protection, 129 (3), 457-468. [DOI:10.1007/s41348-022-00600-z]
26. Leucker, M., Mahlein, A.-K., Steiner, U., & Oerke, E.-C. (2016). Improvement of lesion phenotyping in Cercospora beticola-sugar beet interaction by hyperspectral imaging. Phytopathology, 106 (2), 177-184. [DOI:10.1094/PHYTO-04-15-0100-R]
27. Li, K.-Y., Sampaio de Lima, R., Burnside, N.G., Vahtmäe, E., Kutser, T., Sepp, K., Cabral Pinheiro, V.H., Yang, M.-D., Vain, A., & Sepp, K. (2022). Toward automated machine learning-based hyperspectral image analysis in crop yield and biomass estimation. Remote Sensing, 14 (5), 1114. [DOI:10.3390/rs14051114]
28. Li, X., Chen, K., & He, Y. (2020). In situ and non-destructive detection of the lipid concentration of Scenedesmus obliquus using hyperspectral imaging technique. Algal Research, 45101680. [DOI:10.1016/j.algal.2019.101680]
29. Liakos, K.G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18 (8), 2674. [DOI:10.3390/s18082674]
30. Liu, B., Li, R., Li, H., You, G., Yan, S., & Tong, Q. (2019). Crop/Weed Discrimination Using a Field Imaging Spectrometer System. Sensors, 19 (23), 5154. [DOI:10.3390/s19235154]
31. Lu, B., Dao, P.D., Liu, J., He, Y., & Shang, J. (2020). Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing, 12 (16), 2659. [DOI:10.3390/rs12162659]
32. Lu, Y., Young, S., Linder, E., Whipker, B., & Suchoff, D. (2022). Hyperspectral imaging with machine learning to differentiate cultivars, growth stages, flowers, and leaves of industrial hemp (Cannabis sativa L.). Frontiers in Plant Science, 123392. [DOI:10.3389/fpls.2021.810113]
33. Mahlein, A.-K., Alisaac, E., Al Masri, A., Behmann, J., Dehne, H.-W., & Oerke, E.-C. (2019). Comparison and combination of thermal, fluorescence, and hyperspectral imaging for monitoring fusarium head blight of wheat on spikelet scale. Sensors, 19 (10), 2281. [DOI:10.3390/s19102281]
34. Mahlein, A.-K., Kuska, M.T., Behmann, J., Polder, G., & Walter, A. (2018). Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annual review of phytopathology, 56535-558. [DOI:10.1146/annurev-phyto-080417-050100]
35. Mahlein, A.-K., Steiner, U., Dehne, H.-W., & Oerke, E.-C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture, 11 (4), 413-431. [DOI:10.1007/s11119-010-9180-7]
36. McCann, C., Repasky, K.S., Lawrence, R., & Powell, S. (2017). Multi-temporal mesoscale hyperspectral data of mixed agricultural and grassland regions for anomaly detection. ISPRS Journal of Photogrammetry and Remote Sensing, 131121-133. [DOI:10.1016/j.isprsjprs.2017.07.015]
37. Miphokasap, P., & Wannasiri, W. (2018). Estimations of Nitrogen Concentration in Sugarcane Using Hyperspectral Imagery. Sustainability, 10 (4), 1266. [DOI:10.3390/su10041266]
38. Mishra, P., Asaari, M.S.M., Herrero-Langreo, A., Lohumi, S., Diezma, B., & Scheunders, P. (2017). Close range hyperspectral imaging of plants: A review. Biosystems Engineering, 16449-67. [DOI:10.1016/j.biosystemseng.2017.09.009]
39. Mishra, P., Lohumi, S., Khan, H.A., & Nordon, A .(2020). Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Computers and Electronics in Agriculture, 178105780. [DOI:10.1016/j.compag.2020.105780]
40. Nanni, M.R., Demattê, J.A.M., Rodrigues, M., Santos, G.L.A.A.d., Reis, A.S., Oliveira, K.M.d., Cezar, E., Furlanetto, R.H., Crusiol, L.G.T., & Sun, L. (2021). Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors. Remote Sensing, 13 (9), 1782. [DOI:10.3390/rs13091782]
41. Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., & Kwasniewski, M.T. (2021). Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning. Sensors, 21 (3). [DOI:10.3390/s21030742]
42. O'rourke, S., & Holden, N. (2012). Determination of soil organic matter and carbon fractions in forest top soils using spectral data acquired from visible-near infrared hyperspectral images. Soil Science Society of America Journal 76 (2), 586-596. [DOI:10.2136/sssaj2011.0053]
43. Pechanec, V., Mráz, A., Rozkošný, L., & Vyvlečka, P. (2021). Usage of airborne hyperspectral imaging data for identifying spatial variability of soil nitrogen content. ISPRS International Journal of Geo-Information, 10 (6), 355. [DOI:10.3390/ijgi10060355]
44. Polder, G., Blok, P.M., De Villiers, H.A., Van der Wolf, J.M., & Kamp, J. (2019). Potato virus Y detection in seed potatoes using deep learning on hyperspectral images. Frontiers in Plant Science, 10209. [DOI:10.3389/fpls.2019.00209]
45. Proshkin, Y.A., Smirnov, A.A., Semenova, N.A., Dorokhov, A.S., Burynin, D.A., Ivanitskikh, A.S., & Panchenko, V.A. (2021). Assessment of ultraviolet impact on main pigment content in purple basil (Ocimum basilicum L.) by the spectrometric method and hyperspectral images analysis. Applied Sciences, 11 (19), 8804. [DOI:10.3390/app11198804]
46. Scherrer, B., Sheppard, J., Jha, P., & Shaw, J.A. (2019). Hyperspectral imaging and neural networks to classify herbicide-resistant weeds. Journal of Applied Remote Sensing, 13(4), 044516. [DOI:10.1117/1.JRS.13.044516]
47. Shoshany, M., Goldshleger, N., & Chudnovsky, A. (2013). Monitoring of agricultural soil degradation by remote-sensing methods: A review. International Journal of Remote Sensing, 34 (17), 6152-6181. [DOI:10.1080/01431161.2013.793872]
48. Taghinezhad, E., Szumny, A., & Figiel, A. (2023). The Application of Hyperspectral Imaging Technologies for the Prediction and Measurement of the Moisture Content of Various Agricultural Crops during the Drying Process. Molecules, 28 (7), 2930. [DOI:10.3390/molecules28072930]
49. Thomas, S., Behmann, J., Steier, A., Kraska, T., Muller, O., Rascher, U., & Mahlein, A.-K. (2018a). Quantitative assessment of disease severity and rating of barley cultivars based on hyperspectral imaging in a non-invasive, automated phenotyping platform. Plant methods, 14 (1), 1-12. [DOI:10.1186/s13007-018-0313-8]
50. Thomas, S., Kuska, M.T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M., Behmann, J., & Mahlein, A.-K. (2018b). Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective. Journal of Plant Diseases and Protection, 1255-20. [DOI:10.1007/s41348-017-0124-6]
51. Tian, S., Lu, Q., & Wei, L. (2022). Multiscale Superpixel-Based Fine Classification of Crops in the UAV-Based Hyperspectral Imagery. Remote Sensing, 14 (14), 3292. [DOI:10.3390/rs14143292]
52. Türkoğlu, M., & Hanbay, D. (2019). Plant disease and pest detection using deep learning-based features. Turkish Journal of Electrical Engineering and Computer Sciences, 27 (3), 1636-1651. [DOI:10.3906/elk-1809-181]
53. Vidal, M., & Amigo, J.M. (2012). Pre-processing of hyperspectral images. Essential steps before image analysis. Chemometrics and Intelligent Laboratory Systems, 117138-148. [DOI:10.1016/j.chemolab.2012.05.009]
54. Wan, L., Li, H., Li, C., Wang, A., Yang, Y., & Wang, P. (2022). Hyperspectral Sensing of Plant Diseases: Principle and Methods. Agronomy, 12 (6). [DOI:10.3390/agronomy12061451]
55. Wang, S., Guan, K., Zhang, C., Zhou, Q., Wang, S., Wu, X., Jiang, C., Peng, B., Mei, W., & Li, K. (2023). Cross-scale sensing of field-level crop residue cover: Integrating field photos, airborne hyperspectral imaging, and satellite data. Remote Sensing of Environment. [DOI:10.1016/j.rse.2022.113366]
56. Wang, X., Zhang, Y., Ma, X., Xu, T., & Arce, G.R. (2018). Compressive spectral imaging system based on liquid crystal tunable filter. Optics express, 26 (19), 25226-25243. [DOI:10.1364/OE.26.025226]
57. Wen-jun, W., Zhi-wei, L., Can, W., De-cong, Z., & Hui-ling, D. (2019). Prediction of Available Potassium Content in Cinnamon Soil Using Hyperspectral Imaging Technology. Spectroscopy and Spectral Analysis 39 (5), 1579-1585. DOI: 10.3964/j.issn.1000-0593(2019)05-1579-07
58. Wu, D., & Sun, D.-W. (2013). Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review-Part I: Fundamentals. Innovative Food Science and Emerging Technologies, 191-14. [DOI:10.1016/j.ifset.2013.04.014]
59. Yin, F., Wu, M., Liu, L., Zhu, Y., Feng, J., Yin, D., Yin, C., & Yin, C. (2021). Predicting the abundance of copper in soil using reflectance spectroscopy and GF5 hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 102102420. [DOI:10.1016/j.jag.2021.102420]
60. Yuan, L., Yan, P., Han, W., Huang, Y., Wang, B., Zhang, J., Zhang, H., & Bao, Z. (2019). Detection of anthracnose in tea plants based on hyperspectral imaging. Computers and Electronics in Agriculture, 167105039. [DOI:10.1016/j.compag.2019.105039]
61. Zhao, H., Yang, C., Guo, W., Zhang, L., & Zhang, D. (2020). Automatic estimation of crop disease severity levels based on vegetation index normalization. Remote Sensing, 12 (12), 1930. [DOI:10.3390/rs12121930]
62. Zhou, Y., Chen, J., Ma, J., Han, X., Chen, B., Li, G., Xiong, Z., & Huang, F. (2022). Early warning and diagnostic visualization of Sclerotinia infected tomato based on hyperspectral imaging. Scientific Reports, 12 (1), 21140. [DOI:10.1038/s41598-022-23326-2]
63. Zhu, H., Chu, B., Zhang, C., Liu, F., Jiang, L., & He, Y. (2017). Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers. Scientific Reports, 7 (1), 1-12. [DOI:10.1038/s41598-017-04501-2]
64. Žibrat, U., Gerič Stare, B., Knapič, M., Susič, N., Lapajne, J., & Širca, S. (2021). Detection of root-knot nematode Meloidogyne luci infestation of potato tubers using hyperspectral remote sensing and real-time PCR molecular methods. Remote Sensing, 13 (10), 1996. [DOI:10.3390/rs13101996]
ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maleki N, Koolivand D. The Application of Hyperspectral Imaging in Plant Pathology. gebsj 2024; 13 (1) :100-112
URL: http://gebsj.ir/article-1-471-fa.html

ملکی نرجس، کولیوند داود. کاربرد تصویربرداری فراطیفی در بیماری‌شناسی گیاهی. مهندسی ژنتیک و ایمنی زیستی. 1403; 13 (1) :100-112

URL: http://gebsj.ir/article-1-471-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 13، شماره 1 - ( 3-1403 ) برگشت به فهرست نسخه ها
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4722