DAD1 gene editing in Arabidopsis and rapeseed towards inducing sterility
|
Rahil Dolatabadi , Abdolreza Bagheri * , Seyyed Hasan Marashi , Saied Malekzadeh Shafaroudi  |
Biotechnology and Plant Breeding Department, Ferdowsi University of Mashhad, Iran , bagheriyazd@gmail.com |
|
Abstract: (447 Views) |
Hybrid seed production, which is one of the effective strategies to increase crop yield, relies on production of male sterile lines. The objective of this study was to investigate the possibility of producing male sterile lines in rapeseed using CRISPR technology. Different genes involved in the development of pollen and anthers were analyzed and the DAD1 gene, which encodes a chloroplast phospholipase and has two copies in the rapeseed genome, was selected as the target gene. After designing the CRISPR construct for this gene, the efficacy of this construct was investigated in Arabidopsis and rapeseed plants. In total, 18 Arabidopsis plants and 8 transgenic rapeseed plants containing the CRISPR construct were obtained, but none of the putative transgenic rapeseed plants reached the stage of seed production, and the putative transgenic Arabidopsis plants produced empty capsules. To check the effect of the CRISPR construct, DNA from three putative transgenic rapeseed plants was extracted and the sequence in the desired region of the DAD1 gene was analyzed. Sequencing results showed that deletions and additions have occurred in the target site of the CRISPR construct in the genomes of these 3 lines, and the lack of seed production in transgenic plants may be due to the failure of the DAD1 gene. The results of this study indicate that it is possible to achieve sterility using site-directed mutagenesis in DAD1 gene. To confirm the results and restore fertility to these lines, more investigations using inducible promoters for driving the CRISPR construct are required. |
|
Keywords: Anther, CRISPR, Hybrid seed |
|
Full-Text [PDF 708 kb]
(261 Downloads)
|
Type of Study: Research |
Subject:
Plant Received: 2024/01/21 | Accepted: 2024/04/29 | Published: 2024/08/28
|
|
|
|
|
References |
1. Amini Neisiani, A., Saidi, A., & Tohidfar, M. (2023). CRISPR and biosafety considerations. Genetic Engineering and Biosafety Journal, 12(1), 0-0. DOR:20.1001.1.25885073.1402.12.1.10.4. In Persian. 2. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Nekrasov, V. (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9 (1):39.
https://doi.org/10.1186/1746-4811-9-39 [ DOI:10.1186/1746-4811-9-39.] [ PMID] [ ] 3. Cigan, A.M., Singh, M., Benn, G., Feigenbutz, L., Kumar, M., Cho, M.J., Svitashev, S., Young, J. (2017) Targeted mutagenesis of a conserved anther‐expressed P450 gene confers male sterility in monocots. Plant Biotechnology Journal 15 (3):379-389. https://doi.org/ 10.1111/pbi.12633.
https://doi.org/10.1111/pbi.12633 [ DOI:10.1111/pbi.12633.] [ PMID] [ ] 4. Denise, M., Gourret, J., Pellan-Delourne, R., Renard, M., Mariani, C. (1993) Expression of engineered nuclear male sterility in Brassica napus. Plant Physiology 101:1295-1304.
https://doi.org/10.1104/pp.101.4.1295 [ DOI:10.1104/pp.101.4.1295.] [ PMID] [ ] 5. Doyle, J. (1991) DNA protocols for plants. In: Molecular Techniques in Taxonomy. Springer, pp 283-293. https://doi.org/ 10.1007/978-3-642-83962-7_18.
https://doi.org/10.1007/978-3-642-83962-7_18 [ DOI:10.1007/978-3-642-83962-7_18.] 6. Ghodrati, G., Mohammadi, V., Khanghah, H. Z., & Shafeinia, A. R. (2021). Fertility restoring potential of rapeseed (Brassica napus) genotypes in Ogura and Polima CMS systems. Iranian Journal of Field Crop Science, 52(1). DOI: 10.22059/ijfcs.2020.289508.654644. In Persian 7. Grimm, S., Voß-Neudecker, F. (2003) High-purity plasmid isolation using silica oxide. E coli Plasmid Vectors: Methods and Applications:83-87. https://doi.org/ 10.1385/1-59259-409-3:83.
https://doi.org/10.1385/1-59259-409-3:83 [ DOI:10.1385/1-59259-409-3:83.] [ PMID] 8. Hatakeyama, K., Ishiguro, S., Okada, K., Takasaki, T., Hinata, K. (2003) Antisense inhibition of a nuclear gene, BrDAD1, in Brassica causes male sterility that is restorable with jasmonic acid treatment. Molecular Breeding 11 (4):325-336. https://doi.org/ 10.1023/A:1023429700668.
https://doi.org/10.1023/A:1023429700668 [ DOI:10.1023/A:1023429700668.] 9. Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., Okada, K. (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. The Plant Cell 13 (10):2191-2209.
https://doi.org/10.1105/tpc.010192 [ DOI:10.1105/tpc.010192.] [ PMID] [ ] 10. Konagaya, K.I., Ando, S., Kamachi, S., Tsuda, M., Tabei, Y. (2008) Efficient production of genetically engineered, male-sterile Arabidopsis thaliana using anther-specific promoters and genes derived from Brassica oleracea and B. rapa. Plant Cell Reports 27 (11):1741-1754. https://doi.org/ 10.1007/s00299-008-0598-6.
https://doi.org/10.1007/s00299-008-0598-6 [ DOI:10.1007/s00299-008-0598-6.] [ PMID] 11. Langner, T., Kamoun, S., Belhaj, K. (2018) CRISPR crops: plant genome editing toward disease resistance. Annual Review of Phytopathology 56:479-512. https://doi.org/ 10.1146/annurev-phyto-080417-050158.
https://doi.org/10.1146/annurev-phyto-080417-050158 [ DOI:10.1146/annurev-phyto-080417-050158.] [ PMID] 12. Lassoued, R., Macall, D.M., Hesseln, H., Phillips, P.W., Smyth, S.J. (2019) Benefits of genome-edited crops: expert opinion. Transgenic Research 28 (2):247-256. https://doi.org/ 10.1007/s11248-019-00118-5.
https://doi.org/10.1007/s11248-019-00118-5 [ DOI:10.1007/s11248-019-00118-5.] [ PMID] [ ] 13. Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., Sheen, J. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31 (8):688-691. https://doi.org/ 10.1038/nbt.2654.
https://doi.org/10.1038/nbt.2654 [ DOI:10.1038/nbt.2654.] [ PMID] [ ] 14. Li, S., Yang, D., Zhu, Y. (2007) Characterization and use of male sterility in hybrid rice breeding. Journal of Integrative Plant Biology 49 (6):791-804. https://doi.org/ 10.1111/j.1744-7909.2007.00513.x.
https://doi.org/10.1111/j.1744-7909.2007.00513.x [ DOI:10.1111/j.1744-7909.2007.00513.x.] 15. Liu, K.I., Ramli, M.N.B., Woo, C.W.A., Wang, Y., Zhao, T., Zhang, X., Yim, G.R.D., Chong, B.Y., Gowher, A., Chua, M.Z.H. (2016) A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing. Nature Chemical Biology 12 (11):980-987. https://doi.org/ 10.1038/nchembio.2179.
https://doi.org/10.1038/nchembio.2179 [ DOI:10.1038/nchembio.2179.] [ PMID] 16. Maheshwari, P., Selvaraj, G., Kovalchuk, I. (2011) Optimization of Brassica napus (canola) explant regeneration for genetic transformation. New Biotechnology 29 (1):144-155. https://doi.org/ 10.1016/j.nbt.2011.06.014.
https://doi.org/10.1016/j.nbt.2011.06.014 [ DOI:10.1016/j.nbt.2011.06.014.] [ PMID] 17. Millwood, R.J., Moon, H.S., Poovaiah, C.R., Muthukumar, B., Rice, J.H., Abercrombie, J.M., Abercrombie, L.L., Green, W.D., Stewart, C.N. (2016) Engineered selective plant male sterility through pollen‐specific expression of the EcoRI restriction endonuclease. Plant Biotechnology Journal 14 (5):1281-1290. https://doi.org/ 10.1111/pbi.12493.
https://doi.org/10.1111/pbi.12493 [ DOI:10.1111/pbi.12493.] [ PMID] [ ] 18. Naito, Y., Hino, K., Bono, H., Ui-Tei, K. (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31 (7):1120-1123. https://doi.org/ 10.1093/bioinformatics/btu743.
https://doi.org/10.1093/bioinformatics/btu743 [ DOI:10.1093/bioinformatics/btu743.] [ PMID] [ ] 19. Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., Ishitani, R., Zhang, F., Nureki, O. (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156 (5):935-949. https://doi.org/ 10.1016/j.cell.2014.02.001.
https://doi.org/10.1016/j.cell.2014.02.001 [ DOI:10.1016/j.cell.2014.02.001.] [ PMID] [ ] 20. Pixley, K.V., Falck-Zepeda, J.B., Paarlberg, R.L., Phillips, P.W., Slamet-Loedin, I.H., Dhugga, K.S., Campos, H., Gutterson, N. (2022) Genome-edited crops for improved food security of smallholder farmers. Nature Genetics 54 (4):364-367. https://doi.org/ 10.1038/s41588-022-01046-7.
https://doi.org/10.1038/s41588-022-01046-7 [ DOI:10.1038/s41588-022-01046-7.] [ PMID] 21. Ruiz, O.N., Daniell, H. (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of β-ketothiolase. Plant Physiology 138 (3):1232-1246. 10.1104/pp.104.057729. [ DOI:10.1104/pp.104.057729] [ PMID] [ ] 22. Sambrook, J., & Russell, D.W. (2001). Cloning and transformation with plasmid vectors. Molecular Cloning: A Laboratory Manual, Third. Cold Spring Harbor Laboratory Press, New York, 157-258. [ DOI:10.1101/pdb.top101170] [ PMID] 23. Shi, J., Cui, M., Yang, L., Kim, Y.J., Zhang, D. (2015) Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science 20 (11):741-753. https://doi.org/ 10.1016/j.tplants.2015.07.010.
https://doi.org/10.1016/j.tplants.2015.07.010 [ DOI:10.1016/j.tplants.2015.07.010.] [ PMID] 24. Theerakulpisut, P., Xu, H., Singh, M.B., Pettitt, J.M., Knox, R.B. (1991) Isolation and developmental expression of Bcp1, an anther-specific cDNA clone in Brassica campestris. The Plant Cell 3 (10):1073-1084. https://doi.org/ 10.1105/tpc.3.10.1073.
https://doi.org/10.1105/tpc.3.10.1073
https://doi.org/10.2307/3869296 [ DOI:10.1105/tpc.3.10.1073.] 25. Tuncel, A., Pan, C., Sprink, T., Wilhelm, R., Barrangou, R., Li, L., Shih, P.M., Varshney, R.K., Tripathi, L., Van Eck, J. (2023) Genome-edited foods. Nature Reviews Bioengineering:1-18. https://doi.org/ 10.1038/s44222-023-00115-8.
https://doi.org/10.1038/s44222-023-00115-8 [ DOI:10.1038/s44222-023-00115-8.] 26. Weber, E., Gruetzner, R., Werner, S., Engler, C., Marillonnet, S. (2011) Assembly of designer TAL effectors by Golden Gate cloning. PloS One 6 (5):e19722. https://doi.org/ 10.1371/journal.pone.0019722.
https://doi.org/10.1371/journal.pone.0019722 [ DOI:10.1371/journal.pone.0019722.] [ PMID] [ ] 27. Xu, H., Knox, R.B., Taylor, P.E., Singh, M.B. (1995) Bcp1, a gene required for male fertility in Arabidopsis. Proceedings of the National Academy of Sciences 92 (6):2106-2110. https://doi.org/ 10.1073/pnas.92.6.2106.
https://doi.org/10.1073/pnas.92.6.2106 [ DOI:10.1073/pnas.92.6.2106.] [ PMID] [ ] 28. Zander, M., Lewsey, M.G., Clark, N.M., Yin, L., Bartlett, A., Saldierna Guzmán, J. P., ... & Ecker, J. R. (2020). Integrated multi-omics framework of the plant response to jasmonic acid. Nature Plants, 6(3), 290-302.
https://doi.org/10.1038/s41477-020-0605-7 [ DOI:10.1038/s41477-020-0605-7.] [ PMID] [ ] 29. Zhan, X.Y., Wu, H.M., Cheung, A.Y. (1996) Nuclear male sterility induced by pollen-specific expression of a ribonuclease. Sexual Plant Reproduction 9 (1):35-43. https://doi.org/ 10.1007/BF00230364.
https://doi.org/10.1007/BF00230364 [ DOI:10.1007/BF00230364.] 30. Zhang, X., Henriques, R., Lin, S.S., Niu, Q.W., Chua, N.H. (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1 (2):641-646. https://doi.org/ 10.1038/nprot.2006.97.
https://doi.org/10.1038/nprot.2006.97 [ DOI:10.1038/nprot.2006.97.] [ PMID] 31. Zhang, Y., Pribil, M., Palmgren. M., Gao, C. (2020) A CRISPR way for accelerating improvement of food crops. Nature Food 1 (4):200-205. https://doi.org/ 10.1038/s43016-020-0051-8.
https://doi.org/10.1038/s43016-020-0051-8 [ DOI:10.1038/s43016-020-0051-8.] 32. Zhang, Y., Singh, M.B., Swoboda, I., Bhalla, P.L. (2005) Agrobacterium-mediated transformation and generation of male sterile lines of Australian canola. Crop and Pasture Science 56 (4):353-361. https://doi.org/ 10.1071/AR04175.
https://doi.org/10.1071/AR04175 [ DOI:10.1071/AR04175.]
|
|
Add your comments about this article |
|
|
|
Dolatabadi R, Bagheri A, Marashi S H, Malekzadeh Shafaroudi S. DAD1 gene editing in Arabidopsis and rapeseed towards inducing sterility. gebsj 2024; 13 (1) :1-9 URL: http://gebsj.ir/article-1-482-en.html
|