[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 1 (5-2024) ::
gebsj 2024, 13(1): 128-140 Back to browse issues page
The role of Stress Memory in the Adaptation of Plants to Drought Stress Conditions: Molecular Approaches and Perspectives
Rasmieh Hamid , Fatemeh Saeidnia *
Agricultural and Horticultural Science Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center , f.saeidnia@areeo.ac.ir
Abstract:   (1526 Views)
Environmental stresses, resulting from climatic anomalies and environmental changes, often have detrimental effects on plant growth, performance, and survival. These effects include reduced growth, decreased productivity, irreversible damage, and even plant death. However, under specific conditions, stresses may enhance certain plant traits, particularly in response to drought stress. Plants respond to stress through a series of morphological, biochemical, physiological, and metabolic changes that enable adaptation and survival in challenging conditions. One of the most significant mechanisms is "stress memory," which equips plants to respond more rapidly and effectively to recurrent exposure to similar stresses. Stress memory arises from intricate molecular and epigenetic regulations, encompassing alterations in the expression of coding and non-coding RNAs, DNA methylation, histone modifications, chromatin remodeling, and adjustments in phytohormone levels. Stress memory manifests in two primary forms: (1) sustained activation or repression of genes even after the stressor is removed, and (2) enhanced and modified transcriptional responses to repeated stress events compared to unprimed plants. This study explores the role of genetic and epigenetic factors in establishing drought stress memory and somatic priming. It examines the epigenetic regulations, transcriptional adjustments, and metabolic adaptations in plants subjected to repeated drought stress. The objective of this research is to provide a deeper understanding of the molecular mechanisms underlying drought stress memory and to evaluate the potential applications of these insights in crop improvement programs for enhanced drought tolerance. This knowledge can facilitate the development of genetic tools and effective breeding techniques to improve plant resilience to environmental fluctuations.
 
Keywords: Priming, stress memory, drought, chromatin, DNA methylation.
Full-Text [PDF 833 kb]   (184 Downloads)    
Type of Study: Review | Subject: Plant
Received: 2024/04/16 | Accepted: 2024/09/13 | Published: 2024/09/19
References
1. Akhter, Z., Bi, Z., Ali, K., Sun, C., Fiaz, S., Haider, F. U., & Bai, J. (2021). In response to abiotic stress, DNA methylation confers epigenetic changes in plants. Plants, 10 (6), 1096. [DOI:10.3390/plants10061096] [PMID] []
2. Auler, P. A., do Amaral, M. N., Braga, E. J. B., & Maserti, B. (2021). Drought stress memory in rice guard cells: Proteome changes and genomic stability of DNA. Plant Physiology and Biochemistry, 169, 49-62. https://doi.org/10.1016/j.plaphy.2021.10.028 [DOI:10.1016/J.PLAPHY.2021.10.028] [PMID]
3. Banerjee, A., & Roychoudhury, A. (2017). Epigenetic regulation during salinity and drought stress in plants: Histone modifications and DNA methylation. Plant Gene, 11, 199-204. [DOI:10.1016/j.plgene.2017.05.011]
4. Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21, 381-395. https://doi.org/10.1038/cr.2011.22 [DOI:10.1038/cr. 2011.22] [PMID] []
5. Beckers, G. J. M., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., & Conrath, U. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 21, 944-953. [DOI:10.1105/tpc.108.062158] [PMID] []
6. Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447, 407-412. [DOI:10.1038/nature05915] [PMID]
7. Berry, S., & Dean, C. (2015). Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant Journal, 83, 133-148. [DOI:10.1111/tpj.12869] [PMID] []
8. Berry, S., Hartley, M., Olsson, T. S., Dean, C., & Howard, M. (2015). Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. Elife, 4, e07205. [DOI:10.7554/eLife.07205] [PMID] []
9. Bruce, T. J., Matthes, M. C., Napier, J. A., & Pickett, J. A. (2007). Stressful "memories" of plants: evidence and possible mechanisms. Plant Science, 173, 603-608. [DOI:10.1016/j.plantsci.2007.09.002]
10. Chakrabortee, S., Byers, J. S., Jones, S., Garcia, D. M., Bhullar, B., Chang, A., She, R., Lee, L., Fremin, B., Lindquist, S., & Jarosz, D. F. (2016). Intrinsically disordered proteins drive emergence and inheritance of biological traits. Cell, 167, 369-381. https://doi. org/10.1016/j.cell.2016.09.017 [DOI:10.1016/j.cell.2016.09.017] [PMID] []
11. Chen, S., Dang, D., Liu, Y., Ji, S., Zheng, H., Zhao, C., Dong, X., Li, C., Guan, Y., & Zhang, A. (2023). Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions. Frontiers in Plant Science, 14, 1165582. [DOI:10.3389/fpls.2023.1165582] [PMID] []
12. Chung, S., Kwon, C., & Lee, J.-H. (2022). Epigenetic control of abiotic stress signaling in plants. Genes & Genomics, 44, 267-278. [DOI:10.1007/s13258-021-01163-3] [PMID]
13. Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16, 524-531. [DOI:10.1016/j.tplants.2011.06.004] [PMID]
14. Crisp, P. A., Ganguly, D., Eichten, S. R., Borevitz, J. O., & Pogson, B. J. (2016). Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Science Advances, 2 (2), e1501340. [DOI:10.1126/sciadv.1501340] [PMID] []
15. de Freitas Guedes, F. A., Menezes-Silva, P. E., DaMatta, F. M., & Alves-Ferreira, M. (2019) Using transcriptomics to assess plant stress memory. Theoretical and Experimental Plant Physiology, 31, 47-58. [DOI:10.1007/s40626-018-0135-0]
16. de Guedes, F. A. F., Nobres, P., Ferreira, D. C. R., Menezes-Silva, P. E., Ribeiro- Alves, M., Correa, R. L., DaMatta, F. M., & Alves-Ferreira, M. (2018). Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environmental and Experimental Botany, 147, 220-233. [DOI:10.1016/j.envexpbot.2017.12.004]
17. Ding, Y., Fromm, M., & Avramova, Z. (2012). Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nature Communications, 3, 740. [DOI:10.1038/ncomms1732] [PMID]
18. Feng, S., & Jacobsen, S. E. (2011). Epigenetic modifications in plants: An evolutionary perspective. Current Opinion in Plant Biology, 14(2), 179-186. [DOI:10.1016/j.pbi.2010.12.002] [PMID] []
19. Forestan, C., Farinati, S., Zambelli, F., Pavesi, G., Rossi, V., Varotto, S. (2020). Epigenetic signatures of stress adaptation and flowering regulation in response to extended drought and recovery in Zea mays. Plant, Cell & Environment, 43(1), 55-75. https://doi.org/10.1111/pce.13660 [DOI:10.1111/pce. 13660] [PMID]
20. Gallusci, P., Agius, D. R., Moschou, P. N., Dobránszki, J., Kaiserli, E., & Martinelli, F. (2023). Deep inside the epigenetic memories of stressed plants. Trends in Plant Science, 28 (2), 142-153. [DOI:10.1016/j.tplants.2022.07.007] [PMID]
21. Galviz, Y. C., Ribeiro, R. V., & Souza, G. M. (2020). Yes, plants do have memory. Theoretical and Exerimental. Plant Physiology, 32, 195-202. [DOI:10.1007/s40626-020-00181-y]
22. Ganguly, D. R., Crisp, P. A., Eichten, S. R., & Pogson, B. J. (2017). The arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiology, 175(4), 1893-1912. https://doi.org/10.1104/pp.17.00744 [DOI:10.1104/pp.17. 00744] [PMID] []
23. Gelaw, T. A., & Sanan-Mishra, N. (2021). Non-coding RNAs in response to drought stress. International journal of molecular sciences, 22 (22), 12519. [DOI:10.3390/ijms222212519] [PMID] []
24. Godwin, J., & Farrona, S. (2020). Plant epigenetic stress memory induced by drought: a physiological and molecular perspective. In: Farrona, S. (Ed), Plant epigenetics and epigenomics (Second edition). Springer, Newyork. [DOI:10.1007/978-1-0716-0179-2_17] [PMID]
25. Harrington, S. (2019). Understanding the molecular and genetic mechanisms regulating senescence in wheat, University of East Anglia. https://ueaeprints.uea.ac.uk/id/eprint/74201
26. Hilker, M., Schwachtje, J., Baier, M., et al. (2016). Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 91, 1118-1133. https:// doi. org/ 10. 1111/ brv. 12215 [DOI:10.1111/brv.12215] [PMID]
27. Holoch, D., & Moazed, D. (2015). RNA-mediated epigenetic regulation of gene expression. Nature Reviews Genetics, 16, 71-84. https://doi.org/10.1038/nrg3863 [DOI:10. 1038/nrg3863] [PMID] []
28. Juneja, S., Saini, R., Mukit, A., & Kumar, S. (2023). Drought priming modulates ABF, GRFs, related microRNAs and induce metabolic adjustment during heat stress in chickpea. Plant Physiology and Biochemistry, 203, 108007. [DOI:10.1016/j.plaphy.2023.108007] [PMID]
29. Kambona, C. M., Koua, P. A., Léon, J. & Ballvora, A. (2023). Stress memory and its regulation in plants experiencing recurrent drought conditions. Theoretical and Applied Genetics, 136(2), 26. [DOI:10.1007/s00122-023-04313-1] [PMID] []
30. Khan, A., & Zinta, G. (2016). Drought stress and chromatin: an epigenetic perspective. In: Hossain, M. A., Wani, S. H., Bhattacharjee, S., Burritt, D. J., Tran, L. P. (Eds), Drought stress tolerance in plants, vol 2. (pp. 571-586). Springer, Cham. https://doi.org/10.1007/978-3-319-32423-4_21 [DOI:10.1007/978-3- 319-32423-4_21]
31. Kim, J. M., To, T. K., Ishida, J., Matsui, A., Kimura, H., & Seki, M. (2012). Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant and Cell Physiology, 53, 847-856. [DOI:10.1093/pcp/pcs053] [PMID]
32. Koc, A., Markovic, D., Ninkovic, V., & Martinez, G. (2020). Molecular mechanisms regulating priming and stress memory. In: Priming-mediated Stress and Cross-Stress Tolerance in Crop Plants. (pp. 247-265). Academic Press. [DOI:10.1016/B978-0-12-817892-8.00016-7]
33. Kong, L., Liu, Y., Wang, X., & Chang, C. (2020). Insight into the role of epigenetic processes in abiotic and biotic stress response in wheat and barley. International journal of molecular sciences, 21 (4), 1480. [DOI:10.3390/ijms21041480] [PMID] []
34. Kou, S., Gu, Q., Duan, L., Liu, G., Yuan, P., Li, H., Wu, Z., Liu, W., Huang, P., & Liu, L. (2021). Genome-wide bisulphite sequencing uncovered the contribution of DNA methylation to rice short-term drought memory formation. Journal of Plant Growth Regulation, 41, 2903-2917. https://doi.org/10.1007/s00344-021-10483-3 [DOI:10. 1007/s00344-021-10483-3]
35. Leng, P., & Zhao, J. (2020). Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics, 133, 1455-1465. [DOI:10.1007/s00122-019-03494-y] [PMID]
36. Li, P., Yang, H., Wang, L., Liu, H., Huo, H., Zhang, C., Liu, A., Zhu, A., Hu, J., Lin, Y., & Liu, L. (2019). Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Frontiers in Genetics, 10, 55. https://doi.org/10.3389/fgene.2019.00055 [DOI:10.3389/fgene. 2019.00055] [PMID] []
37. Liu, H., Able, A. J., & Able, J. A. (2021a). Priming crops for the future: rewiring stress memory. Trends in Plant Sciebnce, 27(7), 699-716. doi: 10.1016/j.tplants.2021.11.015 [DOI:10.1016/j.tplants.2021.11.015] [PMID]
38. Liu, H., Able, A. J., & Able, J. A. (2021b). Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat. Scientific Reports, 11, 3613. https://doi.org/10.1038/s41598-021-83074-7 [DOI:10.1038/ s41598-021-83074-7] [PMID] []
39. Liu, N., Ding, Y., Fromm, M., & Avramova, Z. (2014). Different gene-specific mechanisms determine the 'revised-response' memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Research, 42, 5556-5566. [DOI:10.1093/nar/gku220] [PMID] []
40. Luo, L., Zheng, Y., Gao, Z., Chen, Q., Kong, X., & Yang, Y. (2020). Grafting improves drought stress memory by increasing the P5CS1 gene expression in Brassica rapa. Plant and Soil, 452, 61-72. https://doi. org/10.1007/s11104-020-04547-8 [DOI:10.1007/s11104-020-04547-8]
41. Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M. K. N., Ghafoor, A., & Du, X. (2020). Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 9, 105. [DOI:10.3390/cells9010105] [PMID] []
42. Manna, M., Thakur, T., Chirom, O., Mandlik, R., Deshmukh, R., & Salvi, P. (2021). Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum, 172 (2), 847-868. [DOI:10.1111/ppl.13268] [PMID]
43. Margay, A. R., Mehmood, A., & Bashir, L. (2024). Review on Hormonal Regulation of Drought Stress Response in Plants. International Journal of Plant & Soil Science, 36(8), 902-916. https://www.sdiarticle5.com/review-history/119983 [DOI:10.9734/ijpss/2024/v36i84921]
44. Melnyk, C. W., Molnar, A., & Baulcombe, D. C. (2011). Intercellular and systemic movement of RNA silencing signals. EMBO Journal, 30(17), 3553-3563. [DOI:10.1038/emboj.2011.274] [PMID] []
45. Mozgova, I., Mikulski, P., Pecinka, A., & Farrona, S. (2019). Epigenetic mechanisms of abiotic stress response and memory in plants. In: Alvarez-Venegas, R., De-la-Peña, C., Casas-Mollano, J. A. (Eds), Epigenetics in plants of agronomic importance: fundamentals and applications. (pp. 1-64). Springer, Cham. https://doi.org/10.1007/978-3-030-14760-0_1 [DOI:10. 1007/978-3-030-14760-0_1]
46. Neves, D. M., Almeida, L. A. D. H., Santana-Vieira, D. D. S., Freschi, L., Ferreira, C. F., Soares Filho, W. D. S., Costa, M. G. C., Micheli, F., Coelho Filho, M. A., & Gesteira, A. D. S. (2017). Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Scientific Reports, 7, 13684. https://doi. org/10.1038/s41598-017-14161-x [DOI:10.1038/s41598-017-14161-x] [PMID] []
47. Nguyen, N. H., Vu, N. T., & Cheong, J. J. (2022). Transcriptional stress memory and transgenerational inheritance of drought tolerance in plants. International Journal of Molecular Science, 23(21), 12918. https://doi.org/10.3390/ijms232112918 [DOI:10.3390/ijms232112 918] [PMID] []
48. Oberkofler, V., Pratx, L., & B¨ aurle, I. (2021). Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Current Opinion in Plant Biology, 61, 102007. [DOI:10.1016/j.pbi.2021.102007] [PMID] []
49. Rajak, J. (2021). A preliminary review on impact of climate change and our environment with reference to global warming. International Journal of Environmental Science, 10, 11-14.
50. Ramirez, D. A., Rolando, J. L., Yactayo, W., Monneveux, P., Mares, V., & Quiroz, R. (2015). Improving potato drought tolerance through the induction of long-term water stress memory. Plant Science, 238, 26-32. [DOI:10.1016/j.plantsci.2015.05.016] [PMID]
51. Rashid, M. M., Vaishnav, A., Verma, R. K., Sharma, P., Suprasanna, P., & Gaur, R. (2022). Epigenetic regulation of salinity stress responses in cereals. Molecular Biology Reports, 49 (1): 761-772. [DOI:10.1007/s11033-021-06922-9] [PMID]
52. Saeed, F., Chaudhry, U. K., Bakhsh, A., Raza, A., Saeed, Y., Bohra, A., & Varshney, R. K. (2022). Moving beyond DNA sequence to improve plant stress responses. Frontiers in Genetics, 13, 874648. [DOI:10.3389/fgene.2022.874648] [PMID] []
53. Saeidnia, F., & Hamid, R. 2024. Drought stress memory and its relationship with morpho-physiological, biochemical and molecular changes in crop plants. Iranian Journal of Crop Sciences, 26(1), 71-93. (In Persian).
54. Saeidnia, F., Majidi, M. M., & Hosseini, E. (2023a). Simultaneous effect of water deficit and mating systems in fennel (Foeniculum vulgare mill.): Genetics of phytochemical compositions and drought tolerance. Agricultural Water Management, 277, 108122. https://doi.org/ 10.1016/j.agwat.2022.108122 [DOI:10.1016/j.agwat.2022.108122]
55. Saeidnia, F., Majidi, M. M., & Mirlohi, A. (2021). Marker-trait association analysis for drought tolerance in smooth bromegrass. BMC Plant Biology, 21, 116. https:// doi. org/ 10. 1186/s12870- 021- 02891-0 [DOI:10.1186/s12870-021-02891-0] [PMID] []
56. Saeidnia, F., Majidi, M. M., Mirlohi, A., & Bahrami, S. (2019). Inheritance and combining ability of persistence and drought recovery in smooth bromegrass (Bromus inermis L.). Euphytica, 215, 177. https://doi.org/ s10681-019-2500-8 https://doi.org/10.1007/s10681-019-2500-8 [DOI:s10681-019-2500-8]
57. Saeidnia, F., Majidi, M. M., Mirlohi, A., Spanani, S., Karami, Z., & Abdollahi Bakhtiari, M. (2020a). A genetic view on the role of prolonged drought stress and mating systems on post-drought recovery, persistence and drought memory of orchardgrass (Dactylis glomerata L.). Euphytica, 216, 91. [DOI:10.1007/s10681-020-02624-8]
58. Saeidnia, F., Majidi, M. M., Spanani, S., Abdollahi Bakhtiari, M., Karami, Z., & Hughes, N. (2020b). Genotypic-specific responses caused by prolonged drought stress in smooth bromegrass (Bromus inermis): Interactions with mating systems. Plant Breeding, 139, 1029-1041. doi:10.1111/pbr.12846 [DOI:10.1111/pbr.12846]
59. Saeidnia, F., Shoormij, F., Mirlohi, A., Soleimani Kartalaei, E., Mohammadi, M., & Sabzalian, M. R. (2023b). Drought adaptability of different subspecies of tetraploid wheat (Triticum turgidum) under contrasting moisture conditions: Association with solvent retention capacity and quality-related traits. PLoS ONE, 18(2), e0275412. [DOI:10.1371/journal.pone.0275412] [PMID] []
60. Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. T., Schreiber, S. L., Mellor, J., & Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407-411. [DOI:10.1038/nature01080] [PMID]
61. Savvides, A., Ali, S., Tester, M., & Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in Plant Science, 21, 329-340. [DOI:10.1016/j.tplants.2015.11.003] [PMID]
62. Sharif, I., Aleem, S., Junaid, J. A., Ali, Z., Aleem, M., Shahzad, R., Farooq, J., Khan, M. I., Arshad, W., & Ellahi, F. (2024). Multiomics approaches to explore drought tolerance in cotton. Journal of Cotton Research, 7(1), 32. [DOI:10.1186/s42397-024-00193-y]
63. Sharma, M., Kumar, P., Verma, V., Sharma, R., Bhargava, B., & Irfan, M. (2022). Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiology and Biochemistry, 179, 10-24. [DOI:10.1016/j.plaphy.2022.03.004] [PMID]
64. Shi, M., Wang, C., Wang, P., Zhang, M., & Liao, W. (2022). Methylation in DNA, histone, and RNA during flowering under stress condition: A review. Plant Science, 324, 111431. [DOI:10.1016/j.plantsci.2022.111431] [PMID]
65. Singh, P., & Roberts, M. R. (2015). Keeping it in the family: transgenerational memories of plant defense. In: CAB Reviews: Perspectives in Agriculture. Veterinary Science, Nutrition and Natural Resources, 10, 26. https://eprints.lancs.ac.uk/id/eprint/75338
66. Singroha, G., & Sharma, P. (2019). Epigenetic modifications in plants under abiotic stress. In: Meccariello, R. (Ed), Epigenetics. (pp. 1-14). IntechOpen, London. [DOI:10.5772/intechopen.84455] [PMID] []
67. Song, J., Angel, A., Howard, M., & Dean, C. (2012). Vernalization-a cold-induced epigenetic switch. Journal of Cell Science, 125, 3723-3731. [DOI:10.1242/jcs.084764] [PMID]
68. Stief, A., Brzezinka, K., L¨ make, J., & B¨ aurle, I. (2014). Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signaling & Behavior, 9, e970430. [DOI:10.4161/15592316.2014.970430] [PMID] []
69. Sung, S., & Amasino, R. M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427, 159-164. [DOI:10.1038/nature02195] [PMID]
70. Talbert, P. B., & Henikoff, S. (2014). Environmental responses mediated by histone variants. Trends in Cell Biology, 24, 642-650. https://doi.org/ 10.1016/j.tcb.2014.07.006 [DOI:10.1016/j.tcb.2014.07.006] [PMID]
71. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., M'etraux, J. P., & Mauch Mani, B. (2005). Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell, 17, 987-999. [DOI:10.1105/tpc.104.029728] [PMID] []
72. Tsuji, H., Saika, H., Tsutsumi, N., Hirai, A., & Nakazono, M. (2006). Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant and cell physiology, 47 (7), 995-1003. [DOI:10.1093/pcp/pcj072] [PMID]
73. Virlouvet, L., Avenson, T. J., Du, Q., Zhang, C., Liu, N., Fromm, M., Avramova, Z., & Russo, S. E. (2018). Dehydration stress memory: gene networks linked to physiological responses during repeated stresses of Zea mays. Frontiers in Plant Science, 9, 1058. [DOI:10.3389/fpls.2018.01058] [PMID] []
74. Vyse, K., Faivre, L., Romich, M., Pagter, M., Schubert, D., Hincha, D. K., & Zuther, E. (2020). Transcriptional and post-transcriptional regulation and transcriptional memory of chromatin regulators in response to low temperature. Frontiers in Plant Science, 11, 39. https://doi. org/10.3389/fpls.2020.00039 [DOI:10.3389/fpls.2020.00039] [PMID] []
75. Widiez, T., Symeonidi, A., Luo, C., Lam, E., Lawton, M., & Rensing, S. A. (2014). The chromatin landscape of the moss Physcomitrella patens and its dynamics during development and drought stress. Plant Journal, 79, 67-81. [DOI:10.1111/tpj.12542] [PMID]
76. Wojtyla, Ł., Paluch-Lubawa, E., Sobieszczuk-Nowicka, E., & Garnczarska, M. (2020). Drought stress memory and subsequent drought stress tolerance in plants. (pp. 115-131). In: Hossain, M. A et al. (Eds), Priming-mediated stress and cross-stress tolerance in crop plants. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-817892-8.00007-6 [DOI:10.1016/B978-0-12-817892-8. 00007-6]
77. Yin, M., Wang, S., Wang, Y., Wei, R., Liang, Y., Zuo, L., Huo, M., Huang, Z., Lang, J., & Zhao, X. (2024). Impact of Abiotic Stress on Rice and the Role of DNA Methylation in Stress Response Mechanisms. Plants, 13 (19), 2700. [DOI:10.3390/plants13192700] [PMID] []
78. Zentner, G. E., & Henikoff, S. (2013). Regulation of nucleosome dynamics by histone modifications. Nature Structural & Molecular Biology, 20, 259-266. https:// doi.org/10.1038/nsmb.2470 [DOI:10.1038/nsmb.2470] [PMID]
79. Zhang, C., Tang, G., Peng, X., Sun, F., Liu, S., & Xi, Y. (2018). Long noncoding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC Plant Biology, 18, 79. https://doi.org/10.1186/s12870-018-1288-3 [DOI:10.1186/ s12870-018-1288-3] [PMID] []
80. Zhang, C. Y., Wang, N. N., Zhang, Y. H., Feng, Q. Z., Yang, C. W., & Liu, B. (2013). DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). Genetics and Molecular Research, 12(2), 1269-1277. https://doi.org/10.4238/2013.April.17.5 [DOI:10.4238/2013.april.17.5] [PMID]
81. Zhang, C., Tang, G., Peng, X., Sun, F., Liu, S., & Xi, Y. (2018). Long noncoding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC Plant Biology, 18, 79. https://doi.org/10.1186/s12870-018-1288-3 [DOI:10.1186/ s12870-018-1288-3] [PMID] []
82. Zhao, T., Zhan, Z., & Jiang, D. (2019). Histone modifications and their regulatory roles in plant development and environmental memory. Journal of genetics and genomics, 46 (10), 467-476. [DOI:10.1016/j.jgg.2019.09.005] [PMID]
83. Zheng, X., Chen, L., Li, M., Lou, Q., Xia, H., Wang, P., Li, T., Liu, H., & Luo, L. (2013). Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS ONE, 8(11), e80253. https://doi.org/10.1371/journal.pone.0080253 [DOI:10.1371/ journal. pone.0080253] [PMID] []
84. Zheng, X., Chen, L., Xia, H., Wei, H., Lou, Q., Li, M., Li, T., & Luo, L. (2017). Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant's adaptation to drought condition. Scientific Reports, 7, 39843. [DOI:10.1038/srep39843] [PMID] []
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hamid R, Saeidnia F. The role of Stress Memory in the Adaptation of Plants to Drought Stress Conditions: Molecular Approaches and Perspectives. gebsj 2024; 13 (1) :128-140
URL: http://gebsj.ir/article-1-489-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 1 (5-2024) Back to browse issues page
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4722