1. Akhter, Z., Bi, Z., Ali, K., Sun, C., Fiaz, S., Haider, F. U., & Bai, J. (2021). In response to abiotic stress, DNA methylation confers epigenetic changes in plants. Plants, 10 (6), 1096. [ DOI:10.3390/plants10061096] [ PMID] [ ] 2. Auler, P. A., do Amaral, M. N., Braga, E. J. B., & Maserti, B. (2021). Drought stress memory in rice guard cells: Proteome changes and genomic stability of DNA. Plant Physiology and Biochemistry, 169, 49-62.
https://doi.org/10.1016/j.plaphy.2021.10.028 [ DOI:10.1016/J.PLAPHY.2021.10.028] [ PMID] 3. Banerjee, A., & Roychoudhury, A. (2017). Epigenetic regulation during salinity and drought stress in plants: Histone modifications and DNA methylation. Plant Gene, 11, 199-204. [ DOI:10.1016/j.plgene.2017.05.011] 4. Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21, 381-395.
https://doi.org/10.1038/cr.2011.22 [ DOI:10.1038/cr. 2011.22] [ PMID] [ ] 5. Beckers, G. J. M., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., & Conrath, U. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 21, 944-953. [ DOI:10.1105/tpc.108.062158] [ PMID] [ ] 6. Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447, 407-412. [ DOI:10.1038/nature05915] [ PMID] 7. Berry, S., & Dean, C. (2015). Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant Journal, 83, 133-148. [ DOI:10.1111/tpj.12869] [ PMID] [ ] 8. Berry, S., Hartley, M., Olsson, T. S., Dean, C., & Howard, M. (2015). Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. Elife, 4, e07205. [ DOI:10.7554/eLife.07205] [ PMID] [ ] 9. Bruce, T. J., Matthes, M. C., Napier, J. A., & Pickett, J. A. (2007). Stressful "memories" of plants: evidence and possible mechanisms. Plant Science, 173, 603-608. [ DOI:10.1016/j.plantsci.2007.09.002] 10. Chakrabortee, S., Byers, J. S., Jones, S., Garcia, D. M., Bhullar, B., Chang, A., She, R., Lee, L., Fremin, B., Lindquist, S., & Jarosz, D. F. (2016). Intrinsically disordered proteins drive emergence and inheritance of biological traits. Cell, 167, 369-381. https://doi. org/10.1016/j.cell.2016.09.017 [ DOI:10.1016/j.cell.2016.09.017] [ PMID] [ ] 11. Chen, S., Dang, D., Liu, Y., Ji, S., Zheng, H., Zhao, C., Dong, X., Li, C., Guan, Y., & Zhang, A. (2023). Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions. Frontiers in Plant Science, 14, 1165582. [ DOI:10.3389/fpls.2023.1165582] [ PMID] [ ] 12. Chung, S., Kwon, C., & Lee, J.-H. (2022). Epigenetic control of abiotic stress signaling in plants. Genes & Genomics, 44, 267-278. [ DOI:10.1007/s13258-021-01163-3] [ PMID] 13. Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16, 524-531. [ DOI:10.1016/j.tplants.2011.06.004] [ PMID] 14. Crisp, P. A., Ganguly, D., Eichten, S. R., Borevitz, J. O., & Pogson, B. J. (2016). Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Science Advances, 2 (2), e1501340. [ DOI:10.1126/sciadv.1501340] [ PMID] [ ] 15. de Freitas Guedes, F. A., Menezes-Silva, P. E., DaMatta, F. M., & Alves-Ferreira, M. (2019) Using transcriptomics to assess plant stress memory. Theoretical and Experimental Plant Physiology, 31, 47-58. [ DOI:10.1007/s40626-018-0135-0] 16. de Guedes, F. A. F., Nobres, P., Ferreira, D. C. R., Menezes-Silva, P. E., Ribeiro- Alves, M., Correa, R. L., DaMatta, F. M., & Alves-Ferreira, M. (2018). Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environmental and Experimental Botany, 147, 220-233. [ DOI:10.1016/j.envexpbot.2017.12.004] 17. Ding, Y., Fromm, M., & Avramova, Z. (2012). Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nature Communications, 3, 740. [ DOI:10.1038/ncomms1732] [ PMID] 18. Feng, S., & Jacobsen, S. E. (2011). Epigenetic modifications in plants: An evolutionary perspective. Current Opinion in Plant Biology, 14(2), 179-186. [ DOI:10.1016/j.pbi.2010.12.002] [ PMID] [ ] 19. Forestan, C., Farinati, S., Zambelli, F., Pavesi, G., Rossi, V., Varotto, S. (2020). Epigenetic signatures of stress adaptation and flowering regulation in response to extended drought and recovery in Zea mays. Plant, Cell & Environment, 43(1), 55-75.
https://doi.org/10.1111/pce.13660 [ DOI:10.1111/pce. 13660] [ PMID] 20. Gallusci, P., Agius, D. R., Moschou, P. N., Dobránszki, J., Kaiserli, E., & Martinelli, F. (2023). Deep inside the epigenetic memories of stressed plants. Trends in Plant Science, 28 (2), 142-153. [ DOI:10.1016/j.tplants.2022.07.007] [ PMID] 21. Galviz, Y. C., Ribeiro, R. V., & Souza, G. M. (2020). Yes, plants do have memory. Theoretical and Exerimental. Plant Physiology, 32, 195-202. [ DOI:10.1007/s40626-020-00181-y] 22. Ganguly, D. R., Crisp, P. A., Eichten, S. R., & Pogson, B. J. (2017). The arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiology, 175(4), 1893-1912.
https://doi.org/10.1104/pp.17.00744 [ DOI:10.1104/pp.17. 00744] [ PMID] [ ] 23. Gelaw, T. A., & Sanan-Mishra, N. (2021). Non-coding RNAs in response to drought stress. International journal of molecular sciences, 22 (22), 12519. [ DOI:10.3390/ijms222212519] [ PMID] [ ] 24. Godwin, J., & Farrona, S. (2020). Plant epigenetic stress memory induced by drought: a physiological and molecular perspective. In: Farrona, S. (Ed), Plant epigenetics and epigenomics (Second edition). Springer, Newyork. [ DOI:10.1007/978-1-0716-0179-2_17] [ PMID] 25. Harrington, S. (2019). Understanding the molecular and genetic mechanisms regulating senescence in wheat, University of East Anglia. https://ueaeprints.uea.ac.uk/id/eprint/74201 26. Hilker, M., Schwachtje, J., Baier, M., et al. (2016). Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 91, 1118-1133. https:// doi. org/ 10. 1111/ brv. 12215 [ DOI:10.1111/brv.12215] [ PMID] 27. Holoch, D., & Moazed, D. (2015). RNA-mediated epigenetic regulation of gene expression. Nature Reviews Genetics, 16, 71-84.
https://doi.org/10.1038/nrg3863 [ DOI:10. 1038/nrg3863] [ PMID] [ ] 28. Juneja, S., Saini, R., Mukit, A., & Kumar, S. (2023). Drought priming modulates ABF, GRFs, related microRNAs and induce metabolic adjustment during heat stress in chickpea. Plant Physiology and Biochemistry, 203, 108007. [ DOI:10.1016/j.plaphy.2023.108007] [ PMID] 29. Kambona, C. M., Koua, P. A., Léon, J. & Ballvora, A. (2023). Stress memory and its regulation in plants experiencing recurrent drought conditions. Theoretical and Applied Genetics, 136(2), 26. [ DOI:10.1007/s00122-023-04313-1] [ PMID] [ ] 30. Khan, A., & Zinta, G. (2016). Drought stress and chromatin: an epigenetic perspective. In: Hossain, M. A., Wani, S. H., Bhattacharjee, S., Burritt, D. J., Tran, L. P. (Eds), Drought stress tolerance in plants, vol 2. (pp. 571-586). Springer, Cham.
https://doi.org/10.1007/978-3-319-32423-4_21 [ DOI:10.1007/978-3- 319-32423-4_21] 31. Kim, J. M., To, T. K., Ishida, J., Matsui, A., Kimura, H., & Seki, M. (2012). Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant and Cell Physiology, 53, 847-856. [ DOI:10.1093/pcp/pcs053] [ PMID] 32. Koc, A., Markovic, D., Ninkovic, V., & Martinez, G. (2020). Molecular mechanisms regulating priming and stress memory. In: Priming-mediated Stress and Cross-Stress Tolerance in Crop Plants. (pp. 247-265). Academic Press. [ DOI:10.1016/B978-0-12-817892-8.00016-7] 33. Kong, L., Liu, Y., Wang, X., & Chang, C. (2020). Insight into the role of epigenetic processes in abiotic and biotic stress response in wheat and barley. International journal of molecular sciences, 21 (4), 1480. [ DOI:10.3390/ijms21041480] [ PMID] [ ] 34. Kou, S., Gu, Q., Duan, L., Liu, G., Yuan, P., Li, H., Wu, Z., Liu, W., Huang, P., & Liu, L. (2021). Genome-wide bisulphite sequencing uncovered the contribution of DNA methylation to rice short-term drought memory formation. Journal of Plant Growth Regulation, 41, 2903-2917.
https://doi.org/10.1007/s00344-021-10483-3 [ DOI:10. 1007/s00344-021-10483-3] 35. Leng, P., & Zhao, J. (2020). Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics, 133, 1455-1465. [ DOI:10.1007/s00122-019-03494-y] [ PMID] 36. Li, P., Yang, H., Wang, L., Liu, H., Huo, H., Zhang, C., Liu, A., Zhu, A., Hu, J., Lin, Y., & Liu, L. (2019). Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Frontiers in Genetics, 10, 55.
https://doi.org/10.3389/fgene.2019.00055 [ DOI:10.3389/fgene. 2019.00055] [ PMID] [ ] 37. Liu, H., Able, A. J., & Able, J. A. (2021a). Priming crops for the future: rewiring stress memory. Trends in Plant Sciebnce, 27(7), 699-716. doi: 10.1016/j.tplants.2021.11.015 [ DOI:10.1016/j.tplants.2021.11.015] [ PMID] 38. Liu, H., Able, A. J., & Able, J. A. (2021b). Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat. Scientific Reports, 11, 3613.
https://doi.org/10.1038/s41598-021-83074-7 [ DOI:10.1038/ s41598-021-83074-7] [ PMID] [ ] 39. Liu, N., Ding, Y., Fromm, M., & Avramova, Z. (2014). Different gene-specific mechanisms determine the 'revised-response' memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Research, 42, 5556-5566. [ DOI:10.1093/nar/gku220] [ PMID] [ ] 40. Luo, L., Zheng, Y., Gao, Z., Chen, Q., Kong, X., & Yang, Y. (2020). Grafting improves drought stress memory by increasing the P5CS1 gene expression in Brassica rapa. Plant and Soil, 452, 61-72. https://doi. org/10.1007/s11104-020-04547-8 [ DOI:10.1007/s11104-020-04547-8] 41. Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M. K. N., Ghafoor, A., & Du, X. (2020). Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 9, 105. [ DOI:10.3390/cells9010105] [ PMID] [ ] 42. Manna, M., Thakur, T., Chirom, O., Mandlik, R., Deshmukh, R., & Salvi, P. (2021). Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum, 172 (2), 847-868. [ DOI:10.1111/ppl.13268] [ PMID] 43. Margay, A. R., Mehmood, A., & Bashir, L. (2024). Review on Hormonal Regulation of Drought Stress Response in Plants. International Journal of Plant & Soil Science, 36(8), 902-916. https://www.sdiarticle5.com/review-history/119983 [ DOI:10.9734/ijpss/2024/v36i84921] 44. Melnyk, C. W., Molnar, A., & Baulcombe, D. C. (2011). Intercellular and systemic movement of RNA silencing signals. EMBO Journal, 30(17), 3553-3563. [ DOI:10.1038/emboj.2011.274] [ PMID] [ ] 45. Mozgova, I., Mikulski, P., Pecinka, A., & Farrona, S. (2019). Epigenetic mechanisms of abiotic stress response and memory in plants. In: Alvarez-Venegas, R., De-la-Peña, C., Casas-Mollano, J. A. (Eds), Epigenetics in plants of agronomic importance: fundamentals and applications. (pp. 1-64). Springer, Cham.
https://doi.org/10.1007/978-3-030-14760-0_1 [ DOI:10. 1007/978-3-030-14760-0_1] 46. Neves, D. M., Almeida, L. A. D. H., Santana-Vieira, D. D. S., Freschi, L., Ferreira, C. F., Soares Filho, W. D. S., Costa, M. G. C., Micheli, F., Coelho Filho, M. A., & Gesteira, A. D. S. (2017). Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Scientific Reports, 7, 13684. https://doi. org/10.1038/s41598-017-14161-x [ DOI:10.1038/s41598-017-14161-x] [ PMID] [ ] 47. Nguyen, N. H., Vu, N. T., & Cheong, J. J. (2022). Transcriptional stress memory and transgenerational inheritance of drought tolerance in plants. International Journal of Molecular Science, 23(21), 12918.
https://doi.org/10.3390/ijms232112918 [ DOI:10.3390/ijms232112 918] [ PMID] [ ] 48. Oberkofler, V., Pratx, L., & B¨ aurle, I. (2021). Epigenetic regulation of abiotic stress memory: maintaining the good things while they last. Current Opinion in Plant Biology, 61, 102007. [ DOI:10.1016/j.pbi.2021.102007] [ PMID] [ ] 49. Rajak, J. (2021). A preliminary review on impact of climate change and our environment with reference to global warming. International Journal of Environmental Science, 10, 11-14. 50. Ramirez, D. A., Rolando, J. L., Yactayo, W., Monneveux, P., Mares, V., & Quiroz, R. (2015). Improving potato drought tolerance through the induction of long-term water stress memory. Plant Science, 238, 26-32. [ DOI:10.1016/j.plantsci.2015.05.016] [ PMID] 51. Rashid, M. M., Vaishnav, A., Verma, R. K., Sharma, P., Suprasanna, P., & Gaur, R. (2022). Epigenetic regulation of salinity stress responses in cereals. Molecular Biology Reports, 49 (1): 761-772. [ DOI:10.1007/s11033-021-06922-9] [ PMID] 52. Saeed, F., Chaudhry, U. K., Bakhsh, A., Raza, A., Saeed, Y., Bohra, A., & Varshney, R. K. (2022). Moving beyond DNA sequence to improve plant stress responses. Frontiers in Genetics, 13, 874648. [ DOI:10.3389/fgene.2022.874648] [ PMID] [ ] 53. Saeidnia, F., & Hamid, R. 2024. Drought stress memory and its relationship with morpho-physiological, biochemical and molecular changes in crop plants. Iranian Journal of Crop Sciences, 26(1), 71-93. (In Persian). 54. Saeidnia, F., Majidi, M. M., & Hosseini, E. (2023a). Simultaneous effect of water deficit and mating systems in fennel (Foeniculum vulgare mill.): Genetics of phytochemical compositions and drought tolerance. Agricultural Water Management, 277, 108122. https://doi.org/ 10.1016/j.agwat.2022.108122 [ DOI:10.1016/j.agwat.2022.108122] 55. Saeidnia, F., Majidi, M. M., & Mirlohi, A. (2021). Marker-trait association analysis for drought tolerance in smooth bromegrass. BMC Plant Biology, 21, 116. https:// doi. org/ 10. 1186/s12870- 021- 02891-0 [ DOI:10.1186/s12870-021-02891-0] [ PMID] [ ] 56. Saeidnia, F., Majidi, M. M., Mirlohi, A., & Bahrami, S. (2019). Inheritance and combining ability of persistence and drought recovery in smooth bromegrass (Bromus inermis L.). Euphytica, 215, 177. https://doi.org/ s10681-019-2500-8
https://doi.org/10.1007/s10681-019-2500-8 [ DOI:s10681-019-2500-8] 57. Saeidnia, F., Majidi, M. M., Mirlohi, A., Spanani, S., Karami, Z., & Abdollahi Bakhtiari, M. (2020a). A genetic view on the role of prolonged drought stress and mating systems on post-drought recovery, persistence and drought memory of orchardgrass (Dactylis glomerata L.). Euphytica, 216, 91. [ DOI:10.1007/s10681-020-02624-8] 58. Saeidnia, F., Majidi, M. M., Spanani, S., Abdollahi Bakhtiari, M., Karami, Z., & Hughes, N. (2020b). Genotypic-specific responses caused by prolonged drought stress in smooth bromegrass (Bromus inermis): Interactions with mating systems. Plant Breeding, 139, 1029-1041. doi:10.1111/pbr.12846 [ DOI:10.1111/pbr.12846] 59. Saeidnia, F., Shoormij, F., Mirlohi, A., Soleimani Kartalaei, E., Mohammadi, M., & Sabzalian, M. R. (2023b). Drought adaptability of different subspecies of tetraploid wheat (Triticum turgidum) under contrasting moisture conditions: Association with solvent retention capacity and quality-related traits. PLoS ONE, 18(2), e0275412. [ DOI:10.1371/journal.pone.0275412] [ PMID] [ ] 60. Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. T., Schreiber, S. L., Mellor, J., & Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407-411. [ DOI:10.1038/nature01080] [ PMID] 61. Savvides, A., Ali, S., Tester, M., & Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in Plant Science, 21, 329-340. [ DOI:10.1016/j.tplants.2015.11.003] [ PMID] 62. Sharif, I., Aleem, S., Junaid, J. A., Ali, Z., Aleem, M., Shahzad, R., Farooq, J., Khan, M. I., Arshad, W., & Ellahi, F. (2024). Multiomics approaches to explore drought tolerance in cotton. Journal of Cotton Research, 7(1), 32. [ DOI:10.1186/s42397-024-00193-y] 63. Sharma, M., Kumar, P., Verma, V., Sharma, R., Bhargava, B., & Irfan, M. (2022). Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiology and Biochemistry, 179, 10-24. [ DOI:10.1016/j.plaphy.2022.03.004] [ PMID] 64. Shi, M., Wang, C., Wang, P., Zhang, M., & Liao, W. (2022). Methylation in DNA, histone, and RNA during flowering under stress condition: A review. Plant Science, 324, 111431. [ DOI:10.1016/j.plantsci.2022.111431] [ PMID] 65. Singh, P., & Roberts, M. R. (2015). Keeping it in the family: transgenerational memories of plant defense. In: CAB Reviews: Perspectives in Agriculture. Veterinary Science, Nutrition and Natural Resources, 10, 26. https://eprints.lancs.ac.uk/id/eprint/75338 66. Singroha, G., & Sharma, P. (2019). Epigenetic modifications in plants under abiotic stress. In: Meccariello, R. (Ed), Epigenetics. (pp. 1-14). IntechOpen, London. [ DOI:10.5772/intechopen.84455] [ PMID] [ ] 67. Song, J., Angel, A., Howard, M., & Dean, C. (2012). Vernalization-a cold-induced epigenetic switch. Journal of Cell Science, 125, 3723-3731. [ DOI:10.1242/jcs.084764] [ PMID] 68. Stief, A., Brzezinka, K., L¨ make, J., & B¨ aurle, I. (2014). Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant Signaling & Behavior, 9, e970430. [ DOI:10.4161/15592316.2014.970430] [ PMID] [ ] 69. Sung, S., & Amasino, R. M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427, 159-164. [ DOI:10.1038/nature02195] [ PMID] 70. Talbert, P. B., & Henikoff, S. (2014). Environmental responses mediated by histone variants. Trends in Cell Biology, 24, 642-650. https://doi.org/ 10.1016/j.tcb.2014.07.006 [ DOI:10.1016/j.tcb.2014.07.006] [ PMID] 71. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., M'etraux, J. P., & Mauch Mani, B. (2005). Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell, 17, 987-999. [ DOI:10.1105/tpc.104.029728] [ PMID] [ ] 72. Tsuji, H., Saika, H., Tsutsumi, N., Hirai, A., & Nakazono, M. (2006). Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant and cell physiology, 47 (7), 995-1003. [ DOI:10.1093/pcp/pcj072] [ PMID] 73. Virlouvet, L., Avenson, T. J., Du, Q., Zhang, C., Liu, N., Fromm, M., Avramova, Z., & Russo, S. E. (2018). Dehydration stress memory: gene networks linked to physiological responses during repeated stresses of Zea mays. Frontiers in Plant Science, 9, 1058. [ DOI:10.3389/fpls.2018.01058] [ PMID] [ ] 74. Vyse, K., Faivre, L., Romich, M., Pagter, M., Schubert, D., Hincha, D. K., & Zuther, E. (2020). Transcriptional and post-transcriptional regulation and transcriptional memory of chromatin regulators in response to low temperature. Frontiers in Plant Science, 11, 39. https://doi. org/10.3389/fpls.2020.00039 [ DOI:10.3389/fpls.2020.00039] [ PMID] [ ] 75. Widiez, T., Symeonidi, A., Luo, C., Lam, E., Lawton, M., & Rensing, S. A. (2014). The chromatin landscape of the moss Physcomitrella patens and its dynamics during development and drought stress. Plant Journal, 79, 67-81. [ DOI:10.1111/tpj.12542] [ PMID] 76. Wojtyla, Ł., Paluch-Lubawa, E., Sobieszczuk-Nowicka, E., & Garnczarska, M. (2020). Drought stress memory and subsequent drought stress tolerance in plants. (pp. 115-131). In: Hossain, M. A et al. (Eds), Priming-mediated stress and cross-stress tolerance in crop plants. Elsevier, Amsterdam.
https://doi.org/10.1016/B978-0-12-817892-8.00007-6 [ DOI:10.1016/B978-0-12-817892-8. 00007-6] 77. Yin, M., Wang, S., Wang, Y., Wei, R., Liang, Y., Zuo, L., Huo, M., Huang, Z., Lang, J., & Zhao, X. (2024). Impact of Abiotic Stress on Rice and the Role of DNA Methylation in Stress Response Mechanisms. Plants, 13 (19), 2700. [ DOI:10.3390/plants13192700] [ PMID] [ ] 78. Zentner, G. E., & Henikoff, S. (2013). Regulation of nucleosome dynamics by histone modifications. Nature Structural & Molecular Biology, 20, 259-266. https:// doi.org/10.1038/nsmb.2470 [ DOI:10.1038/nsmb.2470] [ PMID] 79. Zhang, C., Tang, G., Peng, X., Sun, F., Liu, S., & Xi, Y. (2018). Long noncoding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC Plant Biology, 18, 79.
https://doi.org/10.1186/s12870-018-1288-3 [ DOI:10.1186/ s12870-018-1288-3] [ PMID] [ ] 80. Zhang, C. Y., Wang, N. N., Zhang, Y. H., Feng, Q. Z., Yang, C. W., & Liu, B. (2013). DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). Genetics and Molecular Research, 12(2), 1269-1277.
https://doi.org/10.4238/2013.April.17.5 [ DOI:10.4238/2013.april.17.5] [ PMID] 81. Zhang, C., Tang, G., Peng, X., Sun, F., Liu, S., & Xi, Y. (2018). Long noncoding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC Plant Biology, 18, 79.
https://doi.org/10.1186/s12870-018-1288-3 [ DOI:10.1186/ s12870-018-1288-3] [ PMID] [ ] 82. Zhao, T., Zhan, Z., & Jiang, D. (2019). Histone modifications and their regulatory roles in plant development and environmental memory. Journal of genetics and genomics, 46 (10), 467-476. [ DOI:10.1016/j.jgg.2019.09.005] [ PMID] 83. Zheng, X., Chen, L., Li, M., Lou, Q., Xia, H., Wang, P., Li, T., Liu, H., & Luo, L. (2013). Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS ONE, 8(11), e80253.
https://doi.org/10.1371/journal.pone.0080253 [ DOI:10.1371/ journal. pone.0080253] [ PMID] [ ] 84. Zheng, X., Chen, L., Xia, H., Wei, H., Lou, Q., Li, M., Li, T., & Luo, L. (2017). Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant's adaptation to drought condition. Scientific Reports, 7, 39843. [ DOI:10.1038/srep39843] [ PMID] [ ]
|