[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 1 (5-2024) ::
gebsj 2024, 13(1): 113-127 Back to browse issues page
Pathogenicity mechanisms of phytoplasmas in plants
Paniz Abdollahi Saeed , Fatemeh Shahryari *
Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Iran , shahryari@znu.ac.ir
Abstract:   (1359 Views)
Phytoplasmas are microscopic plant pathogenic and cell wall-less prokaryotes of the class Mollicutes the obligate intracellular parasites of plants and insects cause devastative destruction and loss of valuable crops worldwide. Phytoplasmas affect annual and perennial plants and gradually cause decline and death of host plants. Genome sequencing of plant pathogenic prokaryotes reveals their survival and parasitism strategies. Considering the genome sequencing of a large number of phytoplasma species and advances in understanding phytoplasma biology, the most important mechanisms of pathogenicity in phytoplasmas have been described in this research. The main pathogenic factors determined in phytoplasmas include the Sec secretion system, effector proteins such as TENGU, SAP11, PHYL1, SWP11 and SAP54, and membrane proteins. Phytoplasmic effectors secreted by the Sec secretion system are the most important pathogenic factors which by reducing activity of plant hormones such as auxin and jasmonic acid, affect host plants and cause symptoms such as witches’ broom, phyllody, virescence and etc. These symptoms are able to increase the production of more young and green organs in infected plants and the chance of phytoplasmas multiplication in the tissues. Leafhoppers, which are the main insect vector of phytoplasmas, prefer young and green/yellow tissues for feeding and laying eggs. Thus, phytoplasmas are able to manipulate the infected host plants in a manner that they seem more attractive to insects and increase their own transmission efficiency and survival. Thus, Phytoplasma-induced symptoms in host plants might be a benefit increasing their fitness and extending their ecological niche.
Keywords: Effector protein, phyllody, TENGU, witches’ broom
Full-Text [PDF 1025 kb]   (164 Downloads)    
Type of Study: Review | Subject: Microrganisms and Viruses
Received: 2024/05/12 | Accepted: 2024/09/10 | Published: 2024/09/19
References
1. Albertazzi, G., Milc, J., Caffagni, A., Francia, E., Roncaglia, E., Ferrari, F., & Pecchioni, N. (2009). Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Science, 176(6), 792-804. doi: 10.1016/j.plantsci.2009.03.001. [DOI:10.1016/j.plantsci.2009.03.001]
2. Al-Subhi, A. M., Al-Sadi, A. M., Al-Yahyai, R. A., Chen, Y., Mathers, T., Orlovskis, Z., & Hogenhout, S. A. (2021). Witches' broom disease of lime contributes to phytoplasma epidemics and attracts insect vectors. Plant Disease, 105(9), 2637-2648. doi: 10.1094/PDIS-10-20-2112-RE. Epub 2021 Oct 24. [DOI:10.1094/PDIS-10-20-2112-RE] [PMID]
3. Azimi, M., Farokhi-Nejad, R., & Mehrabi-Koushki, M. (2016). First report of a Candidatus Phytoplasma aurantifolia related phytoplasma strain associated with yellowing symptoms on pineapple palm in Iran. New Disease Reports, 34, 4-4. doi: 10.5197/j.2044-0588.2016.034.004. [DOI:10.5197/j.2044-0588.2016.034.004]
4. Babaie, G., Khatabi, B., Bayat, H., Rastgou, M., Hosseini, A., & Salekdeh, G. (2007). Detection and characterization of phytoplasmas infecting ornamental and weed plants in Iran. Journal of Phytopathology, 155(6), 368-372. doi: 10.1111/j.1439-0434.2007.01247.x. [DOI:10.1111/j.1439-0434.2007.01247.x]
5. Bai, X., Correa, V. R., Toruño, T. Y., Ammar, E.-D., Kamoun, S., & Hogenhout, S. A. (2009). AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular Plant-Microbe Interactions, 22(1), 18-30. doi: 10.1094/MPMI-22-1-0018. [DOI:10.1094/MPMI-22-1-0018] [PMID]
6. Bertaccini, A., Oshima, K., Maejima, K., & Namba, S. (2019). Phytoplasma effectors and pathogenicity factors. Phytoplasmas In: Bertaccini, A., Oshima, K., Kube, M., Rao, GP. (Eds). Plant Pathogenic Bacteria-III: Genomics, Host Pathogen Interactions and Diagnosis. Springer Nature Singapore Pte Ltd. pp17-34. doi: 10.1007/978-981-13-9632-8_2.zzzqz [DOI:10.1007/978-981-13-9632-8_2]
7. Block, A., Li, G., Fu, Z. Q., & Alfano, J. R. (2008). Phytopathogen type III effector weaponry and their plant targets. Current opinion in plant biology,11(4), 396-403. doi: 10.1016/j.pbi.2008.06.007. [DOI:10.1016/j.pbi.2008.06.007] [PMID] []
8. Blomquist, C. L., Barbara, D. J., Davies, D. L., Clark, M. F., & Kirkpatrick, B. C. (2001). An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology, 147(3), 571-580. doi: 10.1099/00221287-147-3-571. [DOI:10.1099/00221287-147-3-571] [PMID]
9. Boonrod, K., Kuaguim, L., Braun, M., Müller-Renno, C., Ziegler, C., & Krczal, G. (2023). Identification of the actin-binding region and binding to host plant apple actin of immunodominant transmembrane protein of 'Candidatus Phytoplasma mali'. International Journal of Molecular Sciences, 24(2), 968. doi: 10.3390/ijms24020968. [DOI:10.3390/ijms24020968] [PMID] []
10. Boonrod, K., Strohmayer, A., Schwarz, T., Braun, M., Tropf, T., & Krczal, G. (2022). Beyond Destabilizing Activity of SAP11-like Effector of Candidatus Phytoplasma mali Strain PM19. Microorganisms, 10(7), 1406. doi: 10.3390/microorganisms10071406. [DOI:10.3390/microorganisms10071406] [PMID] []
11. Bové, J. M., Danet, J. L., Bananej, K., Hassanzadeh, N., Taghizadeh, M., Salehi, M., & Garnier, M. (2000). Witches' broom disease of lime (WBDL) in Iran. In International Organization of Citrus Virologists Conference Proceedings (1957-2010) 14(14). doi:10.5070/C56FJ6P05B. [DOI:10.5070/C56FJ6P05B]
12. Chang, S.H., Tan, C.M., Wu, C.T., Lin, T.H., Jiang, S.Y., & Liu, R.C. (2018). Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11. Journal of Experimental Botany, 69,5389-5401. doi: 10.1093/jxb/ery318. [DOI:10.1093/jxb/ery318]
13. Choi, Y. H., Tapias, E. C., Kim, H. K., Lefeber, A. W., Erkelens, C., Verhoeven, Jernej, B., Jana, Z., Robert, V., & Verpoorte, R. (2004). Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiology, 135(4), 2398-2410. doi: 10.1104/pp.104.041012. [DOI:10.1104/pp.104.041012] [PMID] []
14. Christensen, N. M., Axelsen, K. B., Nicolaisen, M., & Schulz, A. (2005). Phytoplasmas and their interactions with hosts. Trends in Plant Science, 10(11), 526-535. doi: 10.1016/j.tplants.2005.09.008. [DOI:10.1016/j.tplants.2005.09.008] [PMID]
15. Christensen, N. M., Nicolaisen, M., Hansen, M., & Schulz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant-Microbe Interactions, 17(11), 1175-1184. doi: 10.1094/MPMI.2004.17.11.1175. [DOI:10.1094/MPMI.2004.17.11.1175] [PMID]
16. Curković Perica, M. (2008). Auxin‐treatment induces recovery of phytoplasma‐infected periwinkle. Journal of Applied Microbiology, 105(6), 1826-1834. doi: 10.1094/MPMI.2004.17.11.1175. [DOI:10.1094/MPMI.2004.17.11.1175] [PMID]
17. Davoodi, A., Panjekeh, N., Moslemkhani, K., & Taheri, A. (2019). Detection and molecular characterization of tomato big bud disease in Qazvin province. Journal of Crop Protection, 8(4), 379-388. DOR: 20.1001.1.22519041.2019.8.4.5.1.
18. Dehghan, H., Salehi, M., Khanchezar, A., & Afshar, H. (2014). Biological and molecular characterization of a phytoplasma associated with greenhouse cucumber phyllody in Fars province. Iranian Journal of Plant Pathology, 50(4), 393-401.
19. Esmailzadeh Hosseini, A., & Babaei, Q. (2023). The association of a related phytoplasma strain to 'Candidatus Phytoplasma aurantifolia' with symptomatic tamarisk trees grown around pistachio orchards in the Chah Afzal area of Ardakan, Yazd province., Journal of Pistachio Science and Technology, 8(14), 122-134. doi:10.5197/j.2044-0588.2016.034.009. [DOI:10.5197/j.2044-0588.2016.034.009]
20. Faghihi, M., Taghavi, S., Safaei, A., Siampour, M., & Najafabadi, S. (2016). First report of a phytoplasma associated with bell pepper big bud disease in Iran. New Disease Reports, 33(15), 2044-0588. doi: 10.5197/j.2044-0588.2016.033.015. [DOI:10.5197/j.2044-0588.2016.033.015]
21. Hogenhout S.A. (2009). Plant pathogens, minor (Phytoplasmas). In: Schaechter M (Ed). Encyclopedia of Microbiology (Third Edition), Academic Press, San Diego, USA, pp 678-688. doi:10.1016/B978-012373944-5.00348-5. [DOI:10.1016/B978-012373944-5.00348-5]
22. Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Ken, K., Satoshi, K., Yasuyuki, Y., Shigetou, N., & Namba, S. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences, 106(15), 6416-6421. doi: 10.1073/pnas.0813038106. [DOI:10.1073/pnas.0813038106] [PMID] []
23. Hosseini, P., Bahar, M., Madani, G., & Zirak, L. (2011). Molecular characterization of phytoplasmas associated with potato purple top disease in Iran. Journal of Phytopathology, 159(4), 241-246. doi: 10.1111/j.1439-0434.2010.01757.x. [DOI:10.1111/j.1439-0434.2010.01757.x]
24. Huang, W., MacLean, A. M., Sugio, A., Maqbool, A., Busscher, M., Cho, S. T., & Hogenhout, S. A. (2021). Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell, 184(20), 5201-5214. doi: 10.1016/j.cell.2021.08.029. Epub 2021 Sep 17. [DOI:10.1016/j.cell.2021.08.029] [PMID] []
25. Imlau, A., Truernit, E., & Sauer, N. (1999). Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. The Plant Cell, 11(3), 309-322. doi: 10.1105/tpc.11.3.309. [DOI:10.1105/tpc.11.3.309] [PMID] []
26. Janik, K., Mithöfer, A., Raffeiner, M., Stellmach, H., Hause, B., & Schlink, K. (2017). An effector of apple proliferation phytoplasma targets TCP transcription factors a generalized virulence strategy of phytoplasma?. Molecular Plant Pathology, 18(3), 435-442. doi: 10.1111/mpp.12409. Epub 2016 Jun 9. [DOI:10.1111/mpp.12409] [PMID] []
27. Kakizawa, S., Oshima, K., Nishigawa, H., Jung, H.-Y., Wei, W., et al., (2004). Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology, 150(1), 135-142. doi: 10.1099/mic.0.26521-0. [DOI:10.1099/mic.0.26521-0] [PMID]
28. Kitazawa, Y., Iwabuchi, N., Maejima, K., Sasano, M., Matsumoto, O., Koinuma, H., & Yamaji, Y. (2022). A phytoplasma effector acts as a ubiquitin-like mediator between floral MADS-box proteins and proteasome shuttle proteins. The Plant Cell, 34(5), 1709-1723. doi: 10.1093/plcell/koac062. [DOI:10.1093/plcell/koac062] [PMID] []
29. Lu, Y. T., Li, M. Y., Cheng, K. T., Tan, C. M., Su, L. W., Lin, W. Y., & Yang, J. Y. (2014). Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiology, 164(3), 1456-1469. doi: 10.1104/pp.113.229740. Epub 2014 Jan 24. [DOI:10.1104/pp.113.229740] [PMID] []
30. MacLean, A. M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A. M., Angenent, G. C., Immink, R. G., & Hogenhout, S. A. (2014). Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biology, 12(4), e1001835. doi: 10.1371/journal.pbio.1001835. eCollection 2014 Apr. [DOI:10.1371/journal.pbio.1001835] [PMID] []
31. MacLean, A. M., Sugio, A., Makarova, O. V., Findlay, K. C., Grieve, V. M., et al., (2011). Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology, 157(2), 831-841. doi: 10.1104/pp.111.181586. Epub 2011 Aug 17. [DOI:10.1104/pp.111.181586] [PMID] []
32. Madden, L., Jeger, M., & Van den Bosch, F. (2000). A theoretical assessment of the effects of vector-virus transmission mechanism on plant virus disease epidemics. Phytopathology, 90(6), 576-594.doi: 10.1094/PHYTO.2000.90.6.576. [DOI:10.1094/PHYTO.2000.90.6.576] [PMID]
33. Maejima, K., Iwai, R., Himeno, M., Komatsu, K., Kitazawa, et al., (2014). Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. The Plant Journal, 78(4), 541-554. doi: 10.1111/tpj.12495. Epub 2014 Apr 15. [DOI:10.1111/tpj.12495] [PMID] []
34. Majidian, P., Ghorbani, H.R., & Farajpour, M. (2024). Achieving agricultural sustainability through soybean production in Iran: Potential and challenges. Heliyon, 10(4). doi: 10.1016/j.heliyon.2024.e26389. [DOI:10.1016/j.heliyon.2024.e26389] [PMID] []
35. Martín-Trillo, M., & Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in plant science, 15(1), 31-39. doi: 10.1016/j.tplants.2009.11.003. [DOI:10.1016/j.tplants.2009.11.003] [PMID]
36. Minato, N., Himeno, M., Hoshi, A., Maejima, K., Komatsu, K., et al., (2014). The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Scientific Reports, 4(1), 7399. doi: 10.1038/srep07399. [DOI:10.1038/srep07399] [PMID] []
37. Mittelberger, C., Hause, B. & Janik, K. (2022). The 'Candidatus Phytoplasma mali'effector protein SAP11CaPm interacts with MdTCP16, a class II CYC/TB1 transcription factor that is highly expressed during phytoplasma infection. PLoS One, 17(12), e0272467. doi: 10.1371/journal.pone.0272467. eCollection 2022. [DOI:10.1371/journal.pone.0272467] [PMID] []
38. Mittelberger, C., Stellmach, H., Hause, B., Kerschbamer, C., Schlink, K., Letschka, T. & Janik, K. (2019). A novel effector protein of apple proliferation phytoplasma disrupts cell integrity of Nicotiana spp. protoplasts. International Journal Of Molecular Sciences, 20(18), 4613. doi: 10.3390/ijms20184613. [DOI:10.3390/ijms20184613] [PMID] []
39. Mori, Y., Nishimura, T. & Koshiba, T. (2005). Vigorous synthesis of indole-3-acetic acid in the apical very tip leads to a constant basipetal flow of the hormone in maize coleoptiles. Plant Science, 168(2), 467-473. doi: 10.1016/j.plantsci.2004.09.010. [DOI:10.1016/j.plantsci.2004.09.010]
40. Munyaneza, J. E., Crosslin, J. M., Upton, J. E. & Buchman,. (2010). Incidence of the beet leafhopper-transmitted virescence agent phytoplasma in local populations of the beet leaf hopper, Circulifer tenellus, in Washington State. Journal of Insect Science, 10(1), 18. doi: 10.1673/031.010.1801. [DOI:10.1673/031.010.1801] [PMID] []
41. Nault, L.R. & Ammar, E. D. (1989). Leafhopper and planthopper transmission of plant viruses. Annual Review of Entomology, 34(1), 503-529. doi: 10.1146/annurev.ento.34.1.503. [DOI:10.1146/annurev.ento.34.1.503]
42. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.Y., Wei, W., et al., (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics, 36(1), 27-29. doi: 10.1038/ng1277. [DOI:10.1038/ng1277] [PMID]
43. Rao G. P., Bertaccini, A., Fiore, N. & Liefting, L. W. (2018). Phytoplasmas. In: Bertaccini, A., & Lee, I. M. Plant Pathogenic Bacteria-1. (1st edn). Springer, Singapore. pp 91-121. doi: 10.1007/978-981-13-2832-9. [DOI:10.1007/978-981-13-2832-9]
44. Salehi, M. (2022). Presence of 'Candidatus Phytoplasma aurantifolia' associated with witches' broom disease of lime trees in Iran. Proceedings of the 23rd Iranian Plant Protection Congress. Tehran, IRAN. DOR: 20.1001.1.23222770.1395.5.2.3.2.
45. Salehi, M., Esmailzadeh, S. & Salehi, E. (2015). Characterisation of a phytoplasma associated with sunflower phyllody in Fars, Isfahan and Yazd provinces of Iran. New Disease Reports, 31, 6-6. doi: 10.5197/j.2044-0588.2015.031.006. [DOI:10.5197/j.2044-0588.2015.031.006]
46. Salehi, M., Esmaeilzadeh-Hosseini, S.A. & Salehi, E. (2019). First report of association of a 16SrII-D phytoplasma with sugarcane white leaf disease in Iran. 367-368. doi: 10.22034/ijpp.2019.44740. [DOI:10.1007/s42161-020-00695-z]
47. Salehi, M., Izadpanah, K. & Heydarnejad, J. (2006). Characterization of a new almond witches' broom phytoplasma in Iran. Journal of Phytopathology, 154(7‐8), 386-391.doi: 10.1111/j.1439-0434.2006.01109.x. [DOI:10.1111/j.1439-0434.2006.01109.x]
48. Salehi, M., Salehi, E. & Esmaeilzadeh-Hosseini, S. (2020). First report of a'Candidatus Phytoplasma asteris'-related strain (16SrI-B) associated with Morus alba (white mulberry) witches' broom in Iran. New Disease Reports, 41(1), 25-25.doi: 10.5197/j.2044-0588.2020.041.025. [DOI:10.5197/j.2044-0588.2020.041.025]
49. Sarab, R. T., Bakhsh, M. S., & Motlagh, M. A. (2016). First report of a phytoplasma associated with Orobanche spp. in Iran. 22nd Proceedings of Iranian Plant Protection Congress, Tehran, Karaj, IRAN. 27-30 .DOR: 20.1001.1.16807073.1394.50.1.1.1.
50. Shahryari, F. & Allahverdipour, T. (2018). "Candidatus Phytoplasma trifolii" related strain affecting Salix babylonica in Iran. Australasian Plant Disease Notes, 13, 1-3. doi: 10.1079/cabicompendium.4085. [DOI:10.1007/s13314-018-0321-6]
51. Shahryari, F., Allahverdipour, T. & Rabiei, Z. (2019). Phytoplasmas associated with grapevine yellows disease in Iran: first report of a'Candidatus Phytoplasma trifolii'-related strain and further finding of a 'Ca. P. solani'-related strain. New Disease Reports, 40, 17-17. doi: 10.5197/j.2044-0588.2019.040.017. [DOI:10.5197/j.2044-0588.2019.040.017]
52. Shahryari, F., Shams-Bakhsh, M., Safarnejad, M. R., Safaie, N. & Ataei Kachoiee, S. (2013). Preparation of antibody against immunodominant membrane protein (imp) of Candidatus phytoplasma aurantifolia. Iranian Journal of Biotechnology, 11(1), 14-21. doi: 10.5812/ijb.9305. [DOI:10.5812/ijb.9305]
53. Shokri, M., Jafary, H., & Azimi Moghadam, M. (2023). Molecular detection and survey of tomato big bud phytoplasma in Zanjan province. Genetic Engineering and Biosafety Journal, 12(1), 123-130. DOR: 20.1001.1.25885073.1402.12.1.1.5
54. Stadler, R., Wright, K. M., Lauterbach, C., Amon, G., Gahrtz, M., Feuerstein, A., Karl, J.O. & Norbert, N,. (2005). Expression of GFP‐fusions in Arabidopsis companion cells reveals non‐specific protein trafficking into sieve elements and identifies a novel post‐phloem domain in roots. The Plant Journal, 41(2), 319-331. doi: 10.1111/j.1365-313X.2004.02298.x. [DOI:10.1111/j.1365-313X.2004.02298.x] [PMID]
55. Strohmayer, A., Schwarz, T., Braun, M., Krczal, G. & Boonrod, K. (2021). The effect of the anticipated nuclear localization sequence of 'Candidatus Phytoplasma mali'SAP11-like protein on localization of the protein and destabilization of TCP transcription factor. Microorganisms, 9(8), 1756. doi: 10.3390/microorganisms9081756. [DOI:10.3390/microorganisms9081756] [PMID] []
56. Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M. & Hogenhout, S. A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences, 108(48), E1254-E1263. doi: 10.1073/pnas.1105664108. [DOI:10.1073/pnas.1105664108] [PMID] []
57. Sugio, A., MacLean, A. M., Kingdom, H. N., Grieve, V. M., Manimekalai, R. & Hogenhout, S. A. (2011). Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual review of phytopathology, 49, 175-195. doi: 10.1146/annurev-phyto-072910-095323. [DOI:10.1146/annurev-phyto-072910-095323] [PMID]
58. Tan, C. M., Li, C. H., Tsao, N. W., Su, L. W., Lu, Y. T., Chang, S. H. & Yang, J. Y. (2016). Phytoplasma SAP11 alters 3-isobutyl-2-methoxypyrazine biosynthesis in Nicotiana benthamiana by suppressing NbOMT1. Journal of Experimental Botany, 67(14), 4415-4425. doi: 10.1093/jxb/erw225. Epub 2016 Jun 8. [DOI:10.1093/jxb/erw225] [PMID] []
59. Timpte, C., Wilson, A. K. & Estelle, M. (1994). The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics, 138(4), 1239-1249. doi: 10.1093/genetics/138.4.1239. [DOI:10.1093/genetics/138.4.1239] [PMID] []
60. Verdin, E., Salar, P., Danet, J.L., Choueiri, E., Jreijiri, F., Zammar E., S., Brigitte, G., Joseph, M. & Garnier, M. (2003). 'Candidatus Phytoplasma phoenicium'sp. nov., a novel phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. International Journal of Systematic and Evolutionary Microbiology, 53(3), 833-838. doi: 10.1099/ijs.0.02453-0. [DOI:10.1099/ijs.0.02453-0] [PMID]
61. Wagner, M., Fingerhut, C., Gross, H. J., & Schön, A. (2001). The first phytoplasma RNase P RNA provides new insights into the sequence requirements of this ribozyme. Nucleic Acids Research, 29(12), 2661-2665. doi: 10.1093/nar/29.12.2661. [DOI:10.1093/nar/29.12.2661] [PMID] []
62. Wang, R., Bai, B., Li, D., Wang, J., Huang, W., Wu, Y., & Zhao, L. (2024). Phytoplasma: A plant pathogen that cannot be ignored in agricultural production-Research progress and outlook. Molecular Plant Pathology, 25(2), e13437. doi: 10.1111/mpp.13437. [DOI:10.1111/mpp.13437] [PMID] []
63. Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51(1), 91-111. doi: 10.1146/annurev.ento.51.110104.151039. [DOI:10.1146/annurev.ento.51.110104.151039] [PMID]
64. Wilson, S. W., Mitter, C., Denno, R. F., & Wilson, M. R. (1994). Evolutionary patterns of host plant use by delphacid planthoppers and their relatives. In: Wilson, S. W., Mitter, C., Denno, R. F., & Wilson, M. R. (Ed) Planthoppers. pp. 7-113. Boston, MA :Springer. doi: 10.1007/978-1-4615-2395-6_2. [DOI:10.1007/978-1-4615-2395-6_2]
65. Ghayeb Zamharir, M., & Razavi, R. (2016). First finding of a 'Candidatus Phytoplasma fraxini'-related strain associated with disease of olive in Iran. New Disease Reports, 34(1), 10-10. doi: 10.5197/j.2044-0588.2016.034.010. [DOI:10.5197/j.2044-0588.2016.034.010]
66. Ghayeb Zamharir, M. (2017). First report of a'Candidatus Phytoplasma phoenicium'-related strain (16Sr IX) associated with Salix witches' broom in Iran. New Disease Reports, 35(1), 37-37. doi: 10.5197/j.2044-0588.2017.035.037. [DOI:10.5197/j.2044-0588.2017.035.037]
67. Zerhoun, M., Nasrullah Nejad, S., Mahmoudi, E., & Zahedi Tabarestani, A. (2022). Association of Candidatus phytoplasma in stone fruit trees of Golestan province, Plant Pests, 83 -90.DOR:20.1001.1.16807073.1401.58.2.12.6.
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdollahi Saeed P, Shahryari F. Pathogenicity mechanisms of phytoplasmas in plants. gebsj 2024; 13 (1) :113-127
URL: http://gebsj.ir/article-1-493-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 1 (5-2024) Back to browse issues page
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.04 seconds with 35 queries by YEKTAWEB 4722