The Effects of Carbon Quantum Dots on Plant
|
Mohammad Dehghani , Fatemeh Alipour , Kaveh Molaei , Arefeh Mohammadian Mobarakeh , Javad Karimi *  |
Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran. , javadkarimi@shirazu.ac.ir |
|
Abstract: (2019 Views) |
Currently, carbon quantum dots have attracted considerable attention due to their unique properties and desirable advantages. High crystallinity, water solubility, good dispersibility, small size, low toxicity, inexpensive raw materials, high chemical stability, environmental compatibility, low cost, stability under light, desirable charge transfer with advanced electronic conductivity, as well as specific thermal and mechanical properties are some of these features. Carbon quantum dots have various applications in different fields. Fabrication of precise chemical and biological sensors, bioimaging, solar cells, drug tracking, nanomedicine, light-emitting diodes (LEDs), and electrocatalysts are some of these applications. Biological sensors based on carbon quantum dots are capable of detecting various metal ions, acids, proteins, biotin, polypeptides, DNA and miRNA, water pollutants, hematin, drugs, vitamins, and other chemicals. In the present study, the properties of carbon quantum dots and some of their fabrication and applications methods have been addressed. In continuation of the paper, the effect of carbon quantum dots on important factors in plants such as growth and development, photosynthesis, absorption and transportation of substances, resistance to biotic and abiotic stresses, as well as their application in agriculture has been investigated. |
|
Keywords: Quantum Dots, Carbon, plant, Growth and Development, Photosynthesis, Respiration, Stress, Uptake and Transmission |
|
Full-Text [PDF 806 kb]
(489 Downloads)
|
Type of Study: Review |
Subject:
Biosafety Received: 2023/10/20 | Accepted: 2024/02/13 | Published: 2024/03/14
|
|
|
|
|
References |
1. Abuzairi, T., Okada, M., Mochizuki, Y., Poespawati, N. R., Purnamaningsih, R. W., & Nagatsu, M. (2015). Maskless functionalization of a carbon nanotube dot array biosensor using an ultrafine atmospheric pressure plasma jet. Carbon, 89, 208-216. doi: 10.1016/j.carbon.2015.03.015 [ DOI:10.1016/j.carbon.2015.03.015] 2. Akiyama, T., Nakada, M., Terasaki, N., & Yamada, S. (2006). Photocurrent enhancement in a porphyrin-gold nanoparticle nanostructure assisted by localized plasmon excitation. Chemical communications, (4), 395-397. doi: 10.1039/B511487J [ DOI:10.1039/B511487J] 3. Ali, M., Sobze, J. M., Pham, T. H., Nadeem, M., Liu, C., Galagedara, L., Cheema, M., & Thomas, R. (2020). Carbon nanoparticles functionalized with carboxylic acid improved the germination and seedling vigor in upland boreal forest species. Nanomaterials, 10(1), 176. doi: 10.3390/nano10010176 [ DOI:10.3390/nano10010176] 4. Arumugham, T., Alagumuthu, M., Amimodu, R. G., Munusamy, S., & Iyer, S. K. (2020). A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications. Sustainable Materials and Technologies, 23, e00138. doi: 10.1016/j.susmat.2019.e00138 [ DOI:10.1016/j.susmat.2019.e00138] 5. Beattie, I. R., & Haverkamp, R. G. (2011). Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics, 3(6), 628-632. doi: 10.1039/c1mt00044f [ DOI:10.1039/c1mt00044f] 6. Bhattacharya, K., Mukherjee, S. P., Gallud, A., Burkert, S. C., Bistarelli, S., Bellucci, S., Bottini, M., Star, A., & Fadeel, B. (2016). Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 333-351. doi: 10.1016/j.nano.2015.11.011 [ DOI:10.1016/j.nano.2015.11.011] 7. Campos, B. B., Contreras-Caceres, R., Bandosz, T. J., Jimenez-Jimenez, J., Rodriguez-Castellon, E., da Silva, J. C. E., & Algarra, M. (2016). Carbon dots as fluorescent sensor for detection of explosive nitrocompounds. Carbon, 106, 171-178. doi: 10.1016/j.carbon.2016.05.030 [ DOI:10.1016/j.carbon.2016.05.030] 8. Chen, J., Dou, R., Yang, Z., Wang, X., Mao, C., Gao, X., & Wang, L. (2016). The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.). Nanotoxicology, 10(6), 818-828. doi: 10.3109/17435390.2015.1133864 [ DOI:10.3109/17435390.2015.1133864] 9. Chichiricco, G., & Poma, A. (2015). Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 5(2), 851-873. doi: 10.3390/nano5020851 [ DOI:10.3390/nano5020851] 10. Costas-Mora, I., Romero, V., Lavilla, I., & Bendicho, C. (2015). Luminescent assays based on carbon dots for inorganic trace analysis. Reviews in Analytical Chemistry, 34(3-4), 61-76. doi: 10.1515/revac-2015-0003 [ DOI:10.1515/revac-2015-0003] 11. Dietz, K. J., & Herth, S. (2011). Plant nanotoxicology. Trends in plant science, 16(11), 582-589. doi: 10.1016/j.tplants.2011.08.003 [ DOI:10.1016/j.tplants.2011.08.003] 12. Ding, C., Zhu, A., & Tian, Y. (2014). Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts of chemical research, 47(1), 20-30. doi: 10.1021/ar400023s [ DOI:10.1021/ar400023s] 13. Fang, Y., Guo, S., Li, D., Zhu, C., Ren, W., Dong, S., & Wang, E. (2012). Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS nano, 6(1), 400-409. doi: 10.1021/nn2046373 [ DOI:10.1021/nn2046373] 14. Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a re‐evaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environment, 28(8), 1056-1071. doi: 10.1111/j.1365-3040.2005.01327.x [ DOI:10.1111/j.1365-3040.2005.01327.x] 15. Gardea-Torresdey, J. L., Parsons, J., Gomez, E., Peralta-Videa, J., Troiani, H., Santiago, P., & Yacaman, M. J. (2002). Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Letters, 2(4), 397-401. doi: 10.1021/nl015673+ [ DOI:10.1021/nl015673] 16. Guerrero-Gonzalez, R., Vazquez-Davila, F., Saucedo-Flores, E., Ruelas, R., Ceballos-Sanchez, O., & Pelayo, J. (2023). Green approach synthesis of carbon quantum dots from agave bagasse and their use to boost seed germination and plant growth. SN Applied Sciences, 5(8), 1-12. doi: 10.1007/s42452-023-05428-2 [ DOI:10.1007/s42452-023-05428-2] 17. He, X., Deng, H., & Hwang, H. (2019). La aplicacion actual de la nanotecnología en la alimentacion y la agricultura. Journal of Food and Drug Analysis, 27(1), 1-21. doi: 10.22201/ceiich.24485691e.2019.23.67747 [ DOI:10.22201/ceiich.24485691e.2019.23.67747] 18. Huo, Y. (2022). A Phenazine Bio-Electrochemical System Integrates Photosynthesis and Fuel Cell. 12th International Conference on Bioscience, Biochemistry and Bioinformatics. doi/10.1145/3510427.3510446 [ DOI:10.1145/3510427.3510446] 19. Joshi, A., Sharma, L., Kaur, S., Dharamvir, K., Nayyar, H., & Verma, G. (2020). Plant nanobionic effect of multi-walled carbon nanotubes on growth, anatomy, yield and grain composition of rice. BioNanoScience, 10, 430-445. doi: 10.1007/s12668-020-00725-1 [ DOI:10.1007/s12668-020-00725-1] 20. Karimi J. & Mohsenzadeh S. (2016). Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian Journal of Plant Physiology. 63(1): 119-123. doi: 10.1134/S1021443716010106 [ DOI:10.1134/S1021443716010106] 21. Karimi J. & Mohsenzadeh S. (2017). Physiological effects of silver nanoparticles and silver nitrate toxicity in Triticum aestivum. Iranian Journal of Science and Technology (Sciences), 41(1): 111-120. doi: 10.1007/s40995-017-0200-6 [ DOI:10.1007/s40995-017-0200-6] 22. Karami, M. H., & Abdouss, M. (2024). Recent advances of carbon quantum dots in tumor imaging. Nanomedicine Journal, 11(1). doi: 10.22038/nmj.2023.73847.1798 23. Khan, A., Ezati, P., Kim, J. T., & Rhim, J. W. (2022). Biocompatible carbon quantum dots for intelligent sensing in food safety applications: Opportunities and sustainability. Materials Today Sustainability, 100306. doi: 10.1016/j.mtsust.2022.100306 [ DOI:10.1016/j.mtsust.2022.100306] 24. Kim, S., Seo, J. K., Park, J. H., Song, Y., Meng, Y. S., & Heller, M. J. (2017). White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon, 124, 479-485. doi: 10.1016/j.carbon.2017.08.021 [ DOI:10.1016/j.carbon.2017.08.021] 25. Kostov, K., Andonova-Lilova, B., & Smagghe, G. (2022). Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing. Biotechnology & Biotechnological Equipment, 36(1), 949-959. doi: 10.1080/13102818.2022.2146533 [ DOI:10.1080/13102818.2022.2146533] 26. Li, H., Huang, J., Liu, Y., Lu, F., Zhong, J., Wang, Y., Li, S., Lifshitz, Y., Lee, S.-T., & Kang, Z. (2019). Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. Nano Research, 12, 1585-1593. doi: 10.1007/s12274-019-2397-5 [ DOI:10.1007/s12274-019-2397-5] 27. Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., Zhong, J., Huang, H., Wang, Y., & Li, S. (2018). Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Applied Bio Materials, 1(3), 663-672. doi: 10.1021/acsabm.8b00345 [ DOI:10.1021/acsabm.8b00345] 28. Li, W., Wu, S., Zhang, H., Zhang, X., Zhuang, J., Hu, C., Liu, Y., Lei, B., Ma, L., & Wang, X. (2018). Enhanced biological photosynthetic efficiency using light‐harvesting engineering with dual‐emissive carbon dots. Advanced Functional Materials, 28(44), 1804004. doi: 10.1002/adfm.201804004 [ DOI:10.1002/adfm.201804004] 29. Li, W., Zheng, Y., Zhang, H., Liu, Z., Su, W., Chen, S., Liu, Y., Zhuang, J., & Lei, B. (2016). Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS applied materials & interfaces, 8(31), 19939-19945. doi: 10.1021/acsami.6b07268 [ DOI:10.1021/acsami.6b07268] 30. Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C., & Liu, Y. (2020). A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 4(2), 437-448. doi: 10.1039/C9QM00614A [ DOI:10.1039/C9QM00614A] 31. Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381. doi: 10.1039/C4CS00269E [ DOI:10.1039/C4CS00269E] 32. Martinez-Ballesta, M., Zapata, L., Chalbi, N., & Carvajal, M. (2016). Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. Journal of nanobiotechnology, 14(1), 1-14. doi: 10.1186/s12951-016-0199-4 [ DOI:10.1186/s12951-016-0199-4] 33. Mathew, S., & Mathew, B. (2023). A review on the synthesis, properties, and applications of biomass derived carbon dots. Inorganic Chemistry Communications, 111223. doi.org/10.1016/j.inoche.2023.111223 [ DOI:10.1016/j.inoche.2023.111223] 34. Michalet, X., Pinaud, F., & Bentolila, L. (2005). Tsay JM, Doose S, Li JJ, et al. Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science, 307(5709), 538-544. doi: 10.1126/science.1104274 [ DOI:10.1126/science.1104274] 35. Mukherjee, A., Majumdar, S., Servin, A. D., Pagano, L., Dhankher, O. P., & White, J. C. (2016). Carbon nanomaterials in agriculture: a critical review. Frontiers in plant science, 7, 172. doi: 10.3389/fpls.2016.00172 [ DOI:10.3389/fpls.2016.00172] 36. Nair, R., Poulose, A. C., Nagaoka, Y., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. Journal of fluorescence, 21, 2057-2068. doi: 10.1007/s10895-011-0904-5 [ DOI:10.1007/s10895-011-0904-5] 37. Nony, L., Gnecco, E., Baratoff, A., Alkauskas, A., Bennewitz, R., Pfeiffer, O., Maier, S., Wetzel, A., Meyer, E., & Gerber, C. (2004). Observation of individual molecules trapped on a nanostructured insulator. Nano Letters, 4(11), 2185-2189. doi: 10.1021/nl048693v [ DOI:10.1021/nl048693v] 38. Okegawa, Y., & Motohashi, K. (2015). Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. The Plant Journal, 84(5), 900-913. doi: 10.1111/tpj.13049 [ DOI:10.1111/tpj.13049] 39. Pajewska-Szmyt, M., Buszewski, B., & Gadzała-Kopciuch, R. (2020). Sulphur and nitrogen doped carbon dots synthesis by microwave assisted method as quantitative analytical nano-tool for mercury ion sensing. Materials Chemistry and Physics, 242, 122484. doi: 10.1016/j.matchemphys.2019.122484 [ DOI:10.1016/j.matchemphys.2019.122484] 40. Peralta-Videa, J., Sreenivasan, S. T., & Narayan, M. (2020). Influence of carbon quantum dots on the biome. Processes, 8(4), 445. doi: 10.3390/pr8040445 [ DOI:10.3390/pr8040445] 41. Petersen, E. J., Henry, T. B., Zhao, J., MacCuspie, R. I., Kirschling, T. L., Dobrovolskaia, M. A., Hackley, V., Xing, B., & White, J. C. (2014). Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environmental science & technology, 48(8), 4226-4246. doi: 10.1021/es4052999 [ DOI:10.1021/es4052999] 42. Sarmast, M. K., Salehi, H. (2016). Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology. Mol Biotechnol 58, 441-449. doi: 10.1007/s12033-016-9943-0 [ DOI:10.1007/s12033-016-9943-0] 43. Shah, V., & Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, air, and soil pollution, 197, 143-148. doi: 10.1007/s11270-008-9797-6 [ DOI:10.1007/s11270-008-9797-6] 44. Sistani, S., & Shekarchizadeh, H. (2022). Applications of carbon quantum dots in detection and packaging of foods. Journal of food science and technology (Iran), 19(127), 193-209. doi.org/10.22034/fsct.19.127.193 (In Persian) 45. Song, Y., Feng, D., Shi, W., Li, X., & Ma, H. (2013). Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells as well as green gram sprouts. alanta, 116, 237-244. doi: 10.1016/j.talanta.2013.05.022 [ DOI:10.1016/j.talanta.2013.05.022] 46. Song, Y., Zhu, S., Zhang, S., Fu, Y., Wang, L., Zhao, X., & Yang, B. (2015). Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 3(23), 5976-5984. doi: 10.1039/C5TC00813A [ DOI:10.1039/C5TC00813A] 47. Su, L. X., Ma, X. L., Zhao, K. K., Shen, C. L., Lou, Q., Yin, D. M., & Shan, C. X. (2018). Carbon nanodots for enhancing the stress resistance of peanut plants. Acs Omega, 3(12), 17770-17777. doi: 10.1021/acsomega.8b02604 [ DOI:10.1021/acsomega.8b02604] 48. Su, M., Liu, H., Liu, C., Qu, C., Zheng, L., & Hong, F. (2009). Promotion of nano-anatase TiO2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(5), 1112-1116. doi: 10.1016/j.saa.2009.01.010 [ DOI:10.1016/j.saa.2009.01.010] 49. Tripathi, S., & Sarkar, S. (2015). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience, 5, 609-616. doi: 10.1007/s13204-014-0355-9 [ DOI:10.1007/s13204-014-0355-9] 50. Verma, S. K., Das A. K., Gantait S., Kumar V., Gurel E. (2019). Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. Science Total Environ, 667, 485-499. doi: 10.1016/j.scitotenv.2019.02.409 [ DOI:10.1016/j.scitotenv.2019.02.409] 51. Wang, H., Zhang, M., Song, Y., Li, H., Huang, H., Shao, M., Liu, Y., & Kang, Z. (2018). Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 136, 94-102. doi: 10.1016/j.carbon.2018.04.051 [ DOI:10.1016/j.carbon.2018.04.051] 52. Wang, X. Jia Y. f. (2010). Study on adsorption and remediation of heavymetals by poplar and larch in contaminated soil. EnvironmentalScience and Pollution Research, 17(7), 1331-1338. doi: 10.1007/s11356-010-0313-3 [ DOI:10.1007/s11356-010-0313-3] 53. William, W. Y., Chang, E., Drezek, R., & Colvin, V. L. (2006). Water-soluble quantum dots for biomedical applications. Biochemical and biophysical research communications, 348(3), 781-786. doi: 10.1016/j.bbrc.2006.07.160 [ DOI:10.1016/j.bbrc.2006.07.160] 54. Xu, H., Yan, L., Nguyen, V., Yu, Y., & Xu, Y. (2017). One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method. Applied Surface Science, 414, 238-243. doi: 10.1016/j.apsusc.2017.04.092 [ DOI:10.1016/j.apsusc.2017.04.092] 55. Xu, M., Xu, S., Yang, Z., Shu, M., He, G., Huang, D., Zhang, Y. (2015). Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under microwave irradiation. Nanoscale, 7(38), 15915-15923. doi: 10.1039/C5NR04209G [ DOI:10.1039/C5NR04209G] 56. Yatim, N. M., Shaaban, A., Dimin, M. F., Mohamad, N., & Yusof, F. (2019). Urea functionalized multiwalled carbon nanotubes as efficient nitrogen delivery system for rice. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(1), 015011. doi: 10.1088/2043-6254/ab0881 [ DOI:10.1088/2043-6254/ab0881] 57. Zhang, M., Hu, L., Wang, H., Song, Y., Liu, Y., Li, H., Kang, Z. (2018). One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 10(26), 12734-12742. doi: 10.1039/C8NR01644E [ DOI:10.1039/C8NR01644E] 58. Zhang, M., Wang, H., Song, Y., Huang, H., Shao, M., Liu, Y., Kang, Z. (2018). Pristine carbon dots boost the growth of Chlorella vulgaris by enhancing photosynthesis. ACS Applied Bio Materials, 1(3), 894-902. doi: 10.1021/acsabm.8b00319 [ DOI:10.1021/acsabm.8b00319] 59. Zheng, X. T., Ananthanarayanan, A., Luo, K. Q., & Chen, P. (2015). Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 11(14), 1620-1636. doi: 10.1002/smll.201402648 [ DOI:10.1002/smll.201402648] 60. Zhu, Z. J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O. R., Vachet, R. W. (2012). Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environmental science & technology, 46(22), 12391-12398. doi: 10.1021/es301977w [ DOI:10.1021/es301977w] 61. Zuo, P., Lu, X., Sun, Z., Guo, Y., & He, H. (2016). A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta, 183(2), 519-542. doi: 10.1007/s00604-015-1705-3 [ DOI:10.1007/s00604-015-1705-3]
|
|
Add your comments about this article |
|
|
|
|