1. Abuzairi, T., Okada, M., Mochizuki, Y., Poespawati, N. R., Purnamaningsih, R. W., & Nagatsu, M. (2015). Maskless functionalization of a carbon nanotube dot array biosensor using an ultrafine atmospheric pressure plasma jet. Carbon, 89, 208-216. doi: 10.1016/j.carbon.2015.03.015 [ DOI:10.1016/j.carbon.2015.03.015] 2. Akiyama, T., Nakada, M., Terasaki, N., & Yamada, S. (2006). Photocurrent enhancement in a porphyrin-gold nanoparticle nanostructure assisted by localized plasmon excitation. Chemical communications, (4), 395-397. doi: 10.1039/B511487J [ DOI:10.1039/B511487J] 3. Ali, M., Sobze, J. M., Pham, T. H., Nadeem, M., Liu, C., Galagedara, L., Cheema, M., & Thomas, R. (2020). Carbon nanoparticles functionalized with carboxylic acid improved the germination and seedling vigor in upland boreal forest species. Nanomaterials, 10(1), 176. doi: 10.3390/nano10010176 [ DOI:10.3390/nano10010176] 4. Arumugham, T., Alagumuthu, M., Amimodu, R. G., Munusamy, S., & Iyer, S. K. (2020). A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications. Sustainable Materials and Technologies, 23, e00138. doi: 10.1016/j.susmat.2019.e00138 [ DOI:10.1016/j.susmat.2019.e00138] 5. Beattie, I. R., & Haverkamp, R. G. (2011). Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics, 3(6), 628-632. doi: 10.1039/c1mt00044f [ DOI:10.1039/c1mt00044f] 6. Bhattacharya, K., Mukherjee, S. P., Gallud, A., Burkert, S. C., Bistarelli, S., Bellucci, S., Bottini, M., Star, A., & Fadeel, B. (2016). Biological interactions of carbon-based nanomaterials: from coronation to degradation. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 333-351. doi: 10.1016/j.nano.2015.11.011 [ DOI:10.1016/j.nano.2015.11.011] 7. Campos, B. B., Contreras-Caceres, R., Bandosz, T. J., Jimenez-Jimenez, J., Rodriguez-Castellon, E., da Silva, J. C. E., & Algarra, M. (2016). Carbon dots as fluorescent sensor for detection of explosive nitrocompounds. Carbon, 106, 171-178. doi: 10.1016/j.carbon.2016.05.030 [ DOI:10.1016/j.carbon.2016.05.030] 8. Chen, J., Dou, R., Yang, Z., Wang, X., Mao, C., Gao, X., & Wang, L. (2016). The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.). Nanotoxicology, 10(6), 818-828. doi: 10.3109/17435390.2015.1133864 [ DOI:10.3109/17435390.2015.1133864] 9. Chichiricco, G., & Poma, A. (2015). Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 5(2), 851-873. doi: 10.3390/nano5020851 [ DOI:10.3390/nano5020851] 10. Costas-Mora, I., Romero, V., Lavilla, I., & Bendicho, C. (2015). Luminescent assays based on carbon dots for inorganic trace analysis. Reviews in Analytical Chemistry, 34(3-4), 61-76. doi: 10.1515/revac-2015-0003 [ DOI:10.1515/revac-2015-0003] 11. Dietz, K. J., & Herth, S. (2011). Plant nanotoxicology. Trends in plant science, 16(11), 582-589. doi: 10.1016/j.tplants.2011.08.003 [ DOI:10.1016/j.tplants.2011.08.003] 12. Ding, C., Zhu, A., & Tian, Y. (2014). Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts of chemical research, 47(1), 20-30. doi: 10.1021/ar400023s [ DOI:10.1021/ar400023s] 13. Fang, Y., Guo, S., Li, D., Zhu, C., Ren, W., Dong, S., & Wang, E. (2012). Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS nano, 6(1), 400-409. doi: 10.1021/nn2046373 [ DOI:10.1021/nn2046373] 14. Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a re‐evaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environment, 28(8), 1056-1071. doi: 10.1111/j.1365-3040.2005.01327.x [ DOI:10.1111/j.1365-3040.2005.01327.x] 15. Gardea-Torresdey, J. L., Parsons, J., Gomez, E., Peralta-Videa, J., Troiani, H., Santiago, P., & Yacaman, M. J. (2002). Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Letters, 2(4), 397-401. doi: 10.1021/nl015673+ [ DOI:10.1021/nl015673] 16. Guerrero-Gonzalez, R., Vazquez-Davila, F., Saucedo-Flores, E., Ruelas, R., Ceballos-Sanchez, O., & Pelayo, J. (2023). Green approach synthesis of carbon quantum dots from agave bagasse and their use to boost seed germination and plant growth. SN Applied Sciences, 5(8), 1-12. doi: 10.1007/s42452-023-05428-2 [ DOI:10.1007/s42452-023-05428-2] 17. He, X., Deng, H., & Hwang, H. (2019). La aplicacion actual de la nanotecnología en la alimentacion y la agricultura. Journal of Food and Drug Analysis, 27(1), 1-21. doi: 10.22201/ceiich.24485691e.2019.23.67747 [ DOI:10.22201/ceiich.24485691e.2019.23.67747] 18. Huo, Y. (2022). A Phenazine Bio-Electrochemical System Integrates Photosynthesis and Fuel Cell. 12th International Conference on Bioscience, Biochemistry and Bioinformatics. doi/10.1145/3510427.3510446 [ DOI:10.1145/3510427.3510446] 19. Joshi, A., Sharma, L., Kaur, S., Dharamvir, K., Nayyar, H., & Verma, G. (2020). Plant nanobionic effect of multi-walled carbon nanotubes on growth, anatomy, yield and grain composition of rice. BioNanoScience, 10, 430-445. doi: 10.1007/s12668-020-00725-1 [ DOI:10.1007/s12668-020-00725-1] 20. Karimi J. & Mohsenzadeh S. (2016). Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian Journal of Plant Physiology. 63(1): 119-123. doi: 10.1134/S1021443716010106 [ DOI:10.1134/S1021443716010106] 21. Karimi J. & Mohsenzadeh S. (2017). Physiological effects of silver nanoparticles and silver nitrate toxicity in Triticum aestivum. Iranian Journal of Science and Technology (Sciences), 41(1): 111-120. doi: 10.1007/s40995-017-0200-6 [ DOI:10.1007/s40995-017-0200-6] 22. Karami, M. H., & Abdouss, M. (2024). Recent advances of carbon quantum dots in tumor imaging. Nanomedicine Journal, 11(1). doi: 10.22038/nmj.2023.73847.1798 23. Khan, A., Ezati, P., Kim, J. T., & Rhim, J. W. (2022). Biocompatible carbon quantum dots for intelligent sensing in food safety applications: Opportunities and sustainability. Materials Today Sustainability, 100306. doi: 10.1016/j.mtsust.2022.100306 [ DOI:10.1016/j.mtsust.2022.100306] 24. Kim, S., Seo, J. K., Park, J. H., Song, Y., Meng, Y. S., & Heller, M. J. (2017). White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon, 124, 479-485. doi: 10.1016/j.carbon.2017.08.021 [ DOI:10.1016/j.carbon.2017.08.021] 25. Kostov, K., Andonova-Lilova, B., & Smagghe, G. (2022). Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing. Biotechnology & Biotechnological Equipment, 36(1), 949-959. doi: 10.1080/13102818.2022.2146533 [ DOI:10.1080/13102818.2022.2146533] 26. Li, H., Huang, J., Liu, Y., Lu, F., Zhong, J., Wang, Y., Li, S., Lifshitz, Y., Lee, S.-T., & Kang, Z. (2019). Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. Nano Research, 12, 1585-1593. doi: 10.1007/s12274-019-2397-5 [ DOI:10.1007/s12274-019-2397-5] 27. Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., Zhong, J., Huang, H., Wang, Y., & Li, S. (2018). Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Applied Bio Materials, 1(3), 663-672. doi: 10.1021/acsabm.8b00345 [ DOI:10.1021/acsabm.8b00345] 28. Li, W., Wu, S., Zhang, H., Zhang, X., Zhuang, J., Hu, C., Liu, Y., Lei, B., Ma, L., & Wang, X. (2018). Enhanced biological photosynthetic efficiency using light‐harvesting engineering with dual‐emissive carbon dots. Advanced Functional Materials, 28(44), 1804004. doi: 10.1002/adfm.201804004 [ DOI:10.1002/adfm.201804004] 29. Li, W., Zheng, Y., Zhang, H., Liu, Z., Su, W., Chen, S., Liu, Y., Zhuang, J., & Lei, B. (2016). Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS applied materials & interfaces, 8(31), 19939-19945. doi: 10.1021/acsami.6b07268 [ DOI:10.1021/acsami.6b07268] 30. Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C., & Liu, Y. (2020). A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 4(2), 437-448. doi: 10.1039/C9QM00614A [ DOI:10.1039/C9QM00614A] 31. Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381. doi: 10.1039/C4CS00269E [ DOI:10.1039/C4CS00269E] 32. Martinez-Ballesta, M., Zapata, L., Chalbi, N., & Carvajal, M. (2016). Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. Journal of nanobiotechnology, 14(1), 1-14. doi: 10.1186/s12951-016-0199-4 [ DOI:10.1186/s12951-016-0199-4] 33. Mathew, S., & Mathew, B. (2023). A review on the synthesis, properties, and applications of biomass derived carbon dots. Inorganic Chemistry Communications, 111223. doi.org/10.1016/j.inoche.2023.111223 [ DOI:10.1016/j.inoche.2023.111223] 34. Michalet, X., Pinaud, F., & Bentolila, L. (2005). Tsay JM, Doose S, Li JJ, et al. Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science, 307(5709), 538-544. doi: 10.1126/science.1104274 [ DOI:10.1126/science.1104274] 35. Mukherjee, A., Majumdar, S., Servin, A. D., Pagano, L., Dhankher, O. P., & White, J. C. (2016). Carbon nanomaterials in agriculture: a critical review. Frontiers in plant science, 7, 172. doi: 10.3389/fpls.2016.00172 [ DOI:10.3389/fpls.2016.00172] 36. Nair, R., Poulose, A. C., Nagaoka, Y., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. Journal of fluorescence, 21, 2057-2068. doi: 10.1007/s10895-011-0904-5 [ DOI:10.1007/s10895-011-0904-5] 37. Nony, L., Gnecco, E., Baratoff, A., Alkauskas, A., Bennewitz, R., Pfeiffer, O., Maier, S., Wetzel, A., Meyer, E., & Gerber, C. (2004). Observation of individual molecules trapped on a nanostructured insulator. Nano Letters, 4(11), 2185-2189. doi: 10.1021/nl048693v [ DOI:10.1021/nl048693v] 38. Okegawa, Y., & Motohashi, K. (2015). Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. The Plant Journal, 84(5), 900-913. doi: 10.1111/tpj.13049 [ DOI:10.1111/tpj.13049] 39. Pajewska-Szmyt, M., Buszewski, B., & Gadzała-Kopciuch, R. (2020). Sulphur and nitrogen doped carbon dots synthesis by microwave assisted method as quantitative analytical nano-tool for mercury ion sensing. Materials Chemistry and Physics, 242, 122484. doi: 10.1016/j.matchemphys.2019.122484 [ DOI:10.1016/j.matchemphys.2019.122484] 40. Peralta-Videa, J., Sreenivasan, S. T., & Narayan, M. (2020). Influence of carbon quantum dots on the biome. Processes, 8(4), 445. doi: 10.3390/pr8040445 [ DOI:10.3390/pr8040445] 41. Petersen, E. J., Henry, T. B., Zhao, J., MacCuspie, R. I., Kirschling, T. L., Dobrovolskaia, M. A., Hackley, V., Xing, B., & White, J. C. (2014). Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environmental science & technology, 48(8), 4226-4246. doi: 10.1021/es4052999 [ DOI:10.1021/es4052999] 42. Sarmast, M. K., Salehi, H. (2016). Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology. Mol Biotechnol 58, 441-449. doi: 10.1007/s12033-016-9943-0 [ DOI:10.1007/s12033-016-9943-0] 43. Shah, V., & Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, air, and soil pollution, 197, 143-148. doi: 10.1007/s11270-008-9797-6 [ DOI:10.1007/s11270-008-9797-6] 44. Sistani, S., & Shekarchizadeh, H. (2022). Applications of carbon quantum dots in detection and packaging of foods. Journal of food science and technology (Iran), 19(127), 193-209. doi.org/10.22034/fsct.19.127.193 (In Persian) 45. Song, Y., Feng, D., Shi, W., Li, X., & Ma, H. (2013). Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells as well as green gram sprouts. alanta, 116, 237-244. doi: 10.1016/j.talanta.2013.05.022 [ DOI:10.1016/j.talanta.2013.05.022] 46. Song, Y., Zhu, S., Zhang, S., Fu, Y., Wang, L., Zhao, X., & Yang, B. (2015). Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 3(23), 5976-5984. doi: 10.1039/C5TC00813A [ DOI:10.1039/C5TC00813A] 47. Su, L. X., Ma, X. L., Zhao, K. K., Shen, C. L., Lou, Q., Yin, D. M., & Shan, C. X. (2018). Carbon nanodots for enhancing the stress resistance of peanut plants. Acs Omega, 3(12), 17770-17777. doi: 10.1021/acsomega.8b02604 [ DOI:10.1021/acsomega.8b02604] 48. Su, M., Liu, H., Liu, C., Qu, C., Zheng, L., & Hong, F. (2009). Promotion of nano-anatase TiO2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(5), 1112-1116. doi: 10.1016/j.saa.2009.01.010 [ DOI:10.1016/j.saa.2009.01.010] 49. Tripathi, S., & Sarkar, S. (2015). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience, 5, 609-616. doi: 10.1007/s13204-014-0355-9 [ DOI:10.1007/s13204-014-0355-9] 50. Verma, S. K., Das A. K., Gantait S., Kumar V., Gurel E. (2019). Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. Science Total Environ, 667, 485-499. doi: 10.1016/j.scitotenv.2019.02.409 [ DOI:10.1016/j.scitotenv.2019.02.409] 51. Wang, H., Zhang, M., Song, Y., Li, H., Huang, H., Shao, M., Liu, Y., & Kang, Z. (2018). Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 136, 94-102. doi: 10.1016/j.carbon.2018.04.051 [ DOI:10.1016/j.carbon.2018.04.051] 52. Wang, X. Jia Y. f. (2010). Study on adsorption and remediation of heavymetals by poplar and larch in contaminated soil. EnvironmentalScience and Pollution Research, 17(7), 1331-1338. doi: 10.1007/s11356-010-0313-3 [ DOI:10.1007/s11356-010-0313-3] 53. William, W. Y., Chang, E., Drezek, R., & Colvin, V. L. (2006). Water-soluble quantum dots for biomedical applications. Biochemical and biophysical research communications, 348(3), 781-786. doi: 10.1016/j.bbrc.2006.07.160 [ DOI:10.1016/j.bbrc.2006.07.160] 54. Xu, H., Yan, L., Nguyen, V., Yu, Y., & Xu, Y. (2017). One-step synthesis of nitrogen-doped carbon nanodots for ratiometric pH sensing by femtosecond laser ablation method. Applied Surface Science, 414, 238-243. doi: 10.1016/j.apsusc.2017.04.092 [ DOI:10.1016/j.apsusc.2017.04.092] 55. Xu, M., Xu, S., Yang, Z., Shu, M., He, G., Huang, D., Zhang, Y. (2015). Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under microwave irradiation. Nanoscale, 7(38), 15915-15923. doi: 10.1039/C5NR04209G [ DOI:10.1039/C5NR04209G] 56. Yatim, N. M., Shaaban, A., Dimin, M. F., Mohamad, N., & Yusof, F. (2019). Urea functionalized multiwalled carbon nanotubes as efficient nitrogen delivery system for rice. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(1), 015011. doi: 10.1088/2043-6254/ab0881 [ DOI:10.1088/2043-6254/ab0881] 57. Zhang, M., Hu, L., Wang, H., Song, Y., Liu, Y., Li, H., Kang, Z. (2018). One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 10(26), 12734-12742. doi: 10.1039/C8NR01644E [ DOI:10.1039/C8NR01644E] 58. Zhang, M., Wang, H., Song, Y., Huang, H., Shao, M., Liu, Y., Kang, Z. (2018). Pristine carbon dots boost the growth of Chlorella vulgaris by enhancing photosynthesis. ACS Applied Bio Materials, 1(3), 894-902. doi: 10.1021/acsabm.8b00319 [ DOI:10.1021/acsabm.8b00319] 59. Zheng, X. T., Ananthanarayanan, A., Luo, K. Q., & Chen, P. (2015). Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 11(14), 1620-1636. doi: 10.1002/smll.201402648 [ DOI:10.1002/smll.201402648] 60. Zhu, Z. J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O. R., Vachet, R. W. (2012). Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environmental science & technology, 46(22), 12391-12398. doi: 10.1021/es301977w [ DOI:10.1021/es301977w] 61. Zuo, P., Lu, X., Sun, Z., Guo, Y., & He, H. (2016). A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta, 183(2), 519-542. doi: 10.1007/s00604-015-1705-3 [ DOI:10.1007/s00604-015-1705-3]
|