1. Adeleke, B. S., Ayangbenro, A. S., & Babalola, O. (2021). Bacterial community structure of the sunflower (Helianthus annuus) endosphere. Plant Signaling and Behavior, 16(12), 1-13.
https://doi.org/10.1080/15592324.2021.1974217 [ DOI:10.1080/15592324.2021.1974217.] 2. Almaghrabi, O. A., Massoud, S. I., Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Science, 20, 57-61. https:// doi.org/10.1016/j.sjbs.2012.10.004. [ DOI:10.1016/j.sjbs.2012.10.004] 3. Ausuble, F., Brent, F. M., Kingestone, R. E., Moor, D. D., Smith, J. A., Seideman, J. G., & Struhl, K. (1992). Current Protocol in Molecular Biology. Wiley Interscience, New York. 4757 pp. https://www.wiley.com/en-au/ 4. Barea, J. M. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. Journal of Soil Science and Plant Nutrition, 15, 261-282. http://dx.doi.org/10.4067/S0718-95162015005000021. [ DOI:10.4067/S0718-95162015005000021] 5. Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., & Hallmann A. (2002). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS in Microbiology and Ecology, 51, 215-229. [ DOI:10.1016/j.femsec.2004.08.006] 6. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350.
https://doi.org/10.1007/s11274-011-0979-9 [ DOI:10.1007/s11274-011-0979-9.] 7. Cappuccino, J. C., Sherman, N. (1992). Microbiology: A Laboratory Manual, Benjamin/Cummings, New York, USA. https://www.amazon.com/Laboratory-experiments-microbiology. 8. Dinesh, R., Anandaraj, M., Kumar, A., Kundil, Y., Subila, K. P., & Aravind, R. (2015). Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research, 173, 34-43. [ DOI:10.1016/j.micres.2015.01.014] 9. Filho, R. L., Romeiro, R. S., & Alves, E. (2010). Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants. Pesquisa Agropecuária Brasileira, 45, 1381-1387. [ DOI:10.1590/S0100-204X2010001200007] 10. Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., & Abdala, G. (2010). Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology, 76, 1145-1152. http://doi.org/10.1007/s00253-007-1077-7. [ DOI:10.1007/s00253-007-1077-7] 11. Fürnkranz, M., Wanek, W., Richter, A., Abell, G., Rasche, F., & Sessitsch, A. (2008). Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME Journal, 2, 561-570.
https://doi.org/10.1038/ismej.2008.14 [ DOI:10.1038/ismej.2008.14.] 12. Gaur, A. C. (1990). Physiological functions of phosphate solubilizing microorganisms. Phosphate Solubilizing Microorganisms as Biofertilizers. Omega Science Publish, Pp 172. https:// doi.org/10.3390/life13030782. 13. Glick BR. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Hindawi Publishing Corporation, Scientifica. 475 pp.
https://doi.org/10.6064/2012/963401 [ DOI:10.6064/2012/963401.] 14. Gnanamanickam, S. S., Immanuel, J. E. (2007). Epiphytic bacteria, their ecology and functions. In: Gnanamanickam, S.S. (eds) Plant-Associated Bacteria. Springer, Dordrecht.
https://doi.org/10.1007/978-1-4020-4538-7_4 [ DOI:10.1007/978-1-4020-4538-7_4.] 15. Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiology, 26, 192. http://doi.org/ 10.1104/pp.26.1.192 [ DOI:10.1104/pp.26.1.192] 16. Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60, 579-598. http://doi.org/10.1007/s13213-010-0117-1. [ DOI:10.1007/s13213-010-0117-1] 17. Henis, Y., & Bashan, Y. (1986). Epiphytic survival of bacterial leaf pathogens. In: Fokkema, N. J. van den Heuvel, J. (Eds.). Microbiology of the phyllosphere, Cambridge University Press, New York, pp. 252-268. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/epiphytic-bacteria. 18. http:// doi.org/10.1016/j.micres.2015.01.014 . 19. Jabbar, M. A., Marghazani, I. B., & Saima, L. (2009). Effect of replacing cotton seed cake with sunflower meal on milk yield and milk composition in lactating Nile Ravi buffaloes. Journal of Animal and Plant Sciences, 19, 6-9. www.thejaps.org.pk/docs/19-no-1-2009/08-855. 20. Kurabachew, H., & Wydra, K. (2013). Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biological Control, 67, 75-83. [ DOI:10.1016/j.biocontrol.2013.07.004] 21. Malik, M. A., Shah, S. H., Mahmood, S., & Cheema, M. A. (2001). Effect of various planting geometries on the growth, seed yield and oil content of new sunflower hybrid (SF-187). International Journal of Agricultural Biology, 3, 55-56. http://doi.org/ 1560-8530/2001/03-1-55-56. 22. Nongkhlaw, F. M. W., & Joshi, S. R. (2014). Distribution pattern analysis of epiphytic bacteria on ethnomedicinal plant surfaces: A micrographical and molecular approach. Journal of Microscopy Ultrastructure, 2, 34-40.
https://doi.org/10.1016/j.jmau.2014.02.003 [ DOI:10.1016/j.jmau.2014.02.003.] 23. Ran, L. X., Liu, C. Y., Wu, G. J., Van Loon, L. C., & Bakker, P. A. H. (2005). Supperission of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biological Control, 32, 111-120.
https://doi.org/10.1016/j.biocontrol.2004.08.007 [ DOI:10.1016/j.biocontrol.2004.08.007.] 24. Ross, I., Alami, Y., Harvey, P. R., Achouak, W., & Ryder, M. H. (2000). Genetic diversity and biological control activity of novel species of closely related Pseudomonads isolated from wheat field soils in South Australia. Applied and Environmental Microbiology, 66, 1609-1616. http://doi.org/ 10.1128/AEM.66.4.1609-1616.2000 [ DOI:10.1128/AEM.66.4.1609-1616.2000] 25. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425. http://doi.org/ 10.1093/oxfordjournals.molbev.a040454 . 26. Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiology Research, 183, 92-99. http://doi.org/ 10.1016/j.micres.2015.11.008 [ DOI:10.1016/j.micres.2015.11.008] 27. Schaad, N. W., Jones, B. J., Chun, W. (2001). Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. APS Press, St. Paul, MN, U.S.A. 379 pp. [ DOI:10.1046/j.1365-3059.2001.00635.x] 28. Shaharoona, B., Arshad, M., Zahir, Z. A., Khalid, A. (2006). Performance of Pseudomonas spp. containing ACC deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biology and Biochemistry 38: 2971-2975. [ DOI:10.1016/j.soilbio.2006.03.024] 29. Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA. 2009. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biology and Biochemistery, 41, 1768-1774. http:// doi.org/10.1016/j.soilbio.2007.12.031. [ DOI:10.1016/j.soilbio.2007.12.031] 30. Spaepen, S., Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3, 1-13. http:// doi.org/ 10.1101/cshperspect.a001438 . [ DOI:10.1101/cshperspect.a001438] 31. Wang, Z., Zhang, H., Liu, L., Shaojian, L., Xie, J., & Jiang Y. (2022). Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiology, 22, 296-311.
https://doi.org/10.1186/s12866-022-02715-7 [ DOI:10.1186/s12866-022-02715-7.] 32. Xu, Z., Zhang, R., Wang, D., Qiu, M., Feng, H., & Zhang, N. (2014). Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation. Applied and Environmental Microbiology, 80, 2941-2950. http://doi.org/ 10.1128/AEM.03943-13. [ DOI:10.1128/AEM.03943-13] 33. Yang, L., Choufei, W., Zhong, X., Gao, B., Liqin, Z. (2017). Engineering the bacterial endophyte Burkholderia pyrrocinia JK-SH007 for the control of lepidoptera larvae by introducing the cry218 genes of Bacillus thuringiensis. Biotechnology and Biotechnological Equipment, 31, 1167-1172. http://doi.org/ 10.1080/13102818.2017.1379361. [ DOI:10.1080/13102818.2017.1379361] 34. Zinnel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and Environmental Microbiology 68: 2198-2208.
https://doi.org/10.1128/AEM.68.5.2198-2208.2002 [ DOI:10.1128/AEM.68.5.2198-2208.2002.]
|