[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 1 (5-2024) ::
gebsj 2024, 13(1): 74-85 Back to browse issues page
Bacteriophages are the new plant disease treatment agents
Somaieh Sabzali * , Setareh Pazhouhnia , Hamzeh Amiri
Department of Biology, Faculty of Science, Lorestan University, Khorramabad, Iran , Sabzali.s@lu.ac.ir
Abstract:   (500 Views)
Since a long time ago, preparing healthy and fresh food has been one of the most important issues facing mankind. With the advancement of technology and the increase in population, this issue has received more attention. Currently, reducing the use of antibiotics and increasing the use of biological methods in order to control pests and increase the health of food is the concern of all sections of society, especially those active in the field of food production. Antibiotic resistance and adverse effects, the use of chemical pesticides by consumers have caused many restrictions on the use of these compounds. For this reason, attention to the use of biological methods for pest control has increased. Bacteriophages are a group of viruses that inhibit the growth of prokaryotic hosts (bacteria) without affecting eukaryotic hosts (plants and animals). The most important feature of these organisms is that they are out of the cycle after their last host diesand do not cause concern for the consumer. This review study examines the studies conducted in this field, as well as the advantages and disadvantages of this treatment method.
Keywords: Antibiotic, Pathogenic bacteria, Bacteriophage, Sustainable agriculture, Biological control
Full-Text [PDF 802 kb]   (111 Downloads)    
Type of Study: Review | Subject: Biosafety
Received: 2024/05/2 | Accepted: 2024/09/13 | Published: 2024/09/19
References
1. Members may also deposit reference lists here too. Abedon, S. T. (2017). Information phage therapy research should report. Pharmaceuticals, 10 (2), 43. doi.org/10.3390/ph10020043. [DOI:10.3390/ph10020043] [PMID] []
2. Abolaji, A. O., Fasae, K. D., Iwezor, C. E., Aschner, M., Farombi, E. O. (2020). Curcumin attenuates copper-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Toxicology reports, 7, 261-268. doi.org/10.1016/j.toxrep.2020.01.015. [DOI:10.1016/j.toxrep.2020.01.015] [PMID] []
3. Amiri, H. (2007). Chemical composition and antibacterial activity of the essential oil of Allium jesdianum Boiss. & Buhse from Iran. Journal of Medicinal Plants, 6, 39-44.
4. Authority, E. F. S. Lazaro, E., Parnell, S., Vicent Civera, A., Schans, J., Schenk, M., Schrader, G., Cortinas Abrahantes, J., Zancanaro, G., Vos, S. (2020). Guidelines for statistically sound and risk‐based surveys of Xylella fastidiosa. (8325-2397). doi.org/10.2903/sp.efsa.2020.en-1873.
5. Ayin, C., Alvarez, A., Awana, C., Schleinzer, F., Marx, B., Schlub, R. (2019). Ralstonia solanacearum, Ganoderma australe, and bacterial wetwood as predictors of ironwood tree (Casuarina equisetifolia) decline in Guam. Australas. Plant Pathol, 48, 625-636. doi.org/10.1007/s13313-019-00666-8. [DOI:10.1007/s13313-019-00666-8]
6. Balogh, B., Jones, J., Stall, R., Dilley, J., Yonce, H., Canteros, B., Gochez, A. (2006). Control of Asiatic citrus canker and citrus bacterial spot with bacteriophages in Florida . Plant Dis, 92 (7), 1048-1052. doi.10.1094/PDIS-92-7-1048. [DOI:10.1094/PDIS-92-7-1048] [PMID]
7. Balogh, B., Jones, J. B., Momol, M., Olson, S., Obradovic, A., King, P., Jackson, L. (2003). Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant disease, 87 (8), 949-954. doi.org/10.1094/PDIS.2003.87.8.949. [DOI:10.1094/PDIS.2003.87.8.949] [PMID]
8. Bultreys, A., Kaluzna, M. (2010). Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. Journal of Plant Pathology, S21-S33. doi.org/10.4454/JPP.V92I1SUP.2503.
9. Buttimer, C., McAuliffe, O., Ross, R. P., Hill, C., O'Mahony, J., Coffey, A. (2017). Bacteriophages and bacterial plant diseases. Frontiers in microbiology, 8, 34. doi.org/10.3389/fmicb.2017.00034. [DOI:10.3389/fmicb.2017.00034] [PMID] []
10. Carstensen, G., Venter, S., Wingfield, M., Coutinho, T. (2017). Two Ralstonia species associated with bacterial wilt of Eucalyptus. Plant Pathology, 66 (3), 393-403. doi.org/10.1111/ppa.12577. [DOI:10.1111/ppa.12577]
11. Chevallereau, A., Blasdel, B. G., De Smet, J., Monot, M, Zimmermann, M., Kogadeeva, M., Sauer, U., Jorth, P., Whiteley, M., Debarbieux, L. (2016). Next-generation "-omics" approaches reveal a massive alteration of host RNA metabolism during bacteriophage infection of Pseudomonas aeruginosa. PLoS genetics, (7) 12, e1006134. doi.org/10.1371/journal.pgen.1006134. [DOI:10.1371/journal.pgen.1006134] [PMID] []
12. Civerolo, E., Keil, H. (1969). Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathol. Mediterr, 31 (3), 133-140.
13. Coutinho, T. A., Wingfield, M. J. (2017). Ralstonia solanacearum and R. pseudosolanacearum on Eucalyptus: Opportunists or Primary Pathogens? Frontiers in plant science, 8, 761. doi.org/10.3389/fpls.2017.00761. [DOI:10.3389/fpls.2017.00761] [PMID] []
14. Czajkowski, R. (2016). Bacteriophages of soft rot Enterobacteriaceae-a minireview. FEMS Microbiology Letters, 363 (2), fnv230. doi.org/10.1093/femsle/fnv230. [DOI:10.1093/femsle/fnv230] [PMID]
15. Davies, E. V., Winstanley, C., Fothergill, J. L., James, C. E. (2016). The role of temperate bacteriophages in bacterial infection. FEMS microbiology letters, 363(5), fnw015; . doi.org/10.1093/femsle/fnw015 [DOI:10.1093/femsle/fnw015] [PMID]
16. Denning, W. (1794). On the decay of apple trees. New York Society for the Promotion of Agricultural Arts and Manufacturers Transaction, 2, 219-222.
17. Esmaeili, A., Rustaiyan, A., Nadimi, M., Larijani, K., Nadjafi, F., Tabrizi, L., Chalabian, F., & Amiri, H. (2008). Chemical composition and antibacterial activity of essential oils from leaves, stems and flowers of Salvia reuterana Boiss. grown in Iran. Natural Product Research, 22 (6), 516-520. doi.org/10.1080/14786410701592067. [DOI:10.1080/14786410701592067] [PMID]
18. Fahrenkamp-Uppenbrink, J. (2016). Olive quick decline syndrome. Science, 353 (6297), 359-361. doi.org/10.1126/science.353.6297.359-p. [DOI:10.1126/science.353.6297.359-p]
19. Ferraz, H. G. M., Badel, J. L., da Silva Guimaraes, L. M., Reis, B. P., Totola, M. R., Goncalves, R. C., Alfenas, A. C. (2018). Xanthomonas axonopodis pv. eucalyptorum pv. nov. causing bacterial leaf blight on eucalypt in Brazil. The plant pathology journal, 34 (4), 269. doi.org/ 10.5423/PPJ.OA.01.2018.0014. [DOI:10.5423/PPJ.OA.01.2018.0014] [PMID] []
20. Flaherty, J., Harbaugh, B., Jones, J., Somodi, G., Jackson, L. (2001). H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortScience, 36 (1), 98-100. doi.org/10.21273/HORTSCI.36.1.98 [DOI:10.21273/HORTSCI.36.1.98]
21. Flaherty, J., Somodi, G., Jones, J., Harbaugh, B., Jackson, L. (2000). Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. HortScience, 35 (5), 882-884. doi.org/10.21273/HORTSCI.35.5.882. [DOI:10.21273/HORTSCI.35.5.882]
22. Gill, J., Svircev, A., Smith, R., Castle, A. (2003). Bacteriophages of Erwinia amylovora. Applied and environmental microbiology, 69 (4), 2133-2138. doi.org/10.1128/AEM.69.4.2133-2138.2003. [DOI:10.1128/AEM.69.4.2133-2138.2003] [PMID] []
23. Goldberg, E. (1980). Bacteriophage nucleic acid penetration. Receptors and Recognition, series B, 7, 115-141. [DOI:10.1007/978-94-011-6918-9_6]
24. Grabowski, L., Lepek, K., Stasilojc, M., Kosznik-Kwasnicka, K., Zdrojewska, K., Maciag-Dorszynska, M., Wegrzyn, G., Wegrzyn, A. (2021). Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiological research, 248, 126746. doi.org/10.1016/j.micres.2021.126746. [DOI:10.1016/j.micres.2021.126746] [PMID]
25. Grace, E. R., Rabiey, M., Friman, V. P., Jackson, R. W. (2021). Seeing the forest for the trees: Use of phages to treat bacterial tree diseases. Plant Pathology, 70 (9), 1987-2004. doi.org/10.1111/ppa.13465 [DOI:10.1111/ppa.13465]
26. Graham, J., Leite Jr, R. (2004). Lack of control of citrus canker by induced systemic resistance compounds. Plant Disease, 88 (7), 745-750. doi.org/10.1094/PDIS.2004.88.7.745 [DOI:10.1094/PDIS.2004.88.7.745] [PMID]
27. Griffin, K., Gambley, C., Brown, P., Li, Y. (2017). Copper-tolerance in Pseudomonas syringae pv. tomato and Xanthomonas spp. and the control of diseases associated with these pathogens in tomato and pepper. A systematic literature review. Crop Protection, 96, 144-150. doi.org/10.1016/j.cropro.2017.02.008 [DOI:10.1016/j.cropro.2017.02.008]
28. Harshitha, N., Rajasekhar, A., Saurabh, S., Sonalkar, R., Tejashwini, M., Mitra, S. D. (2022). Bacteriophages: Potential Biocontrol Agents and Treatment Options for Bacterial Pathogens. Clinical Microbiology Newsletter, 44 (5), 41-5. doi.org/10.1016/j.clinmicnews.2022.02.002 [DOI:10.1016/j.clinmicnews.2022.02.002]
29. Holtappels, D., Fortuna, K., Lavigne, R., Wagemans, J. (2021). The future of phage biocontrol in integrated plant protection for sustainable crop production. Current Opinion in Biotechnology, 68, 60-71. doi.org/10.1016/j.copbio.2020.08.016 [DOI:10.1016/j.copbio.2020.08.016] [PMID]
30. Jackson, R. S. (2008). Wine science: principles and applications. 3rd edition, Academic press, London, 776.
31. Janse, J. (2010). Emerging bacterial and phytoplasma diseases of fruit trees that are or may become a threat for the Mediterranean basin: notes on epidemiology, risks, prevention and management on first occurrence. IHC2010, 1, 940-981. doi.org/10.17660/ActaHortic.2012.940.81
32. Ji, X., Lu, G., Gai, Y., Zheng, C., Mu, Z. (2008). Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS microbiology ecology, 65 (3), 565-573. doi.org/10.1111/j.1574-6941.2008.00543.x [DOI:10.1111/j.1574-6941.2008.00543.x] [PMID]
33. Jones, J. B., Vallad, G. E., Iriarte, F. B., Obradovic, A., Wernsing, M. H., Jackson, L. E., Balogh, B., Hong, J. C., Momol, M. T. (2012). Considerations for using bacteriophages for plant disease control. Bacteriophage, 2 (4), e23857. doi.org/10.4161/bact.23857 [DOI:10.4161/bact.23857] [PMID] []
34. Kado, C.L. (2002). Overview of how Agrobacterium tumefaciens infects plants and causes disease . The Plant Health Instructor; 11, 01-15. doi.org/10.1094/PHI-I-2002-1118-01.
35. Kalpage, M., De Costa, D. (2014). Isolation of bacteriophages and determination of their efficiency in controlling Ralstonia solanacearum causing bacterial wilt of tomato. Trop. Agric. Res. 26 (1), 140-152. doi.org/10.4038/tar.v26i1.8079. [DOI:10.4038/tar.v26i1.8079]
36. Kuhl, S., Hyman, P., Abedon, S . (2012). Diseases caused by phages: Bacteriophages in health and disease. CABI, 1, 21-32. doi.org/10.1079/9781845939847.0021 [DOI:10.1079/9781845939847.0021]
37. Kuo, T., Chang, L., Yang, C., Yang, S. (1971). Bacterial leaf blight of Rice plant. IV. Effect of bacteriophage on the infectivity of Xanthomonas oryzae . Bot. Bull. Acad. Sin. 12, 1-9.
38. Lang, J., Schwartz, H. Gent, D. (2004). Management of Xanthomonas Leaf Blight of Onion with Bacteriophages and a Plant Activator. Plant Dis, 9 (7), 16-22. doi:10.1094/PDIS-91-7-0871. [DOI:10.1094/PDIS-91-7-0871] [PMID]
39. Lenski, R. E. (1988). Dynamics of Interactions between Bacteria and Virulent Bacteriophage. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 10. Springer, Boston, MA. doi.org/10.1007/978-1-4684-5409-3_1 [DOI:10.1007/978-1-4684-5409-3_1]
40. Li, S., Wu, F., Duan, Y., Singerman, A., Guan, Z. (2020). Citrus greening: Management strategies and their economic impact. HortScience, 55 (5), 604-612 . doi.org/10.21273/HORTSCI14696-19 [DOI:10.21273/HORTSCI14696-19]
41. Liu, J., Chia, S. L., & Tan, G. H. (2021). Isolation and characterization of novel phages targeting Xanthomonas oryzae: culprit of bacterial leaf blight disease in rice. Therapy, Applications, and Research, 2 (3), 142-151. doi.org/10.3389/fmicb.2023.1084025 [DOI:10.1089/phage.2021.0009] [PMID] []
42. Liu, Y., Liu, M., Hu, R., Bai, J., He, X., Jin, Y. (2021). Isolation of the novel phage PHB09 and its potential use against the plant pathogen Pseudomonas syringae pv. actinidiae. Viruses, 13 (11), 2275 . doi.org/10.3390/v13112275 [DOI:10.3390/v13112275] [PMID] []
43. Mackay, G. (2009). New Light on a Hidden Treasure. Rome: FAO (2009), pp. 136. Food and Agriculture Organization of the United Nations, 45 (3), 376-376. [DOI:10.1017/S0014479709007686]
44. Malekzadeh, M., sharifi, M., Rafiei, B. (2023). Survey on the effects of some pesticides on Armoured scale (Chrysomphalus dictyospermi) and the heather ladybird (Chilocorus bipustulatus). Genetic Engineering and Biosafety Journal, 11 (2), 191-200. doi.org/20.1001.1.25885073.1401.11.2.7.6
45. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular plant pathology, 13 (6), 614-629. doi.org/10.1111/j.1364-3703.2012.00804.x [DOI:10.1111/j.1364-3703.2012.00804.x] [PMID] []
46. McKenna, F., El‐Tarabily, K., Hardy, G. S. J., Dell, B. (2001). Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies‐infected seed potatoes. Plant pathology, 50 (6), 666-675. doi.org/10.1046/j.1365-3059.2001.00648.x [DOI:10.1046/j.1365-3059.2001.00648.x]
47. Mohsenzadeh, F., Chehregani, A., Amiri, H. (2011). Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium in different developmental stages. Pharmaceutical Biology, 49 (9), 920-926. doi.org/ 10.3109/13880209.2011.556650. [DOI:10.3109/13880209.2011.556650] [PMID]
48. Momol, T., Jones, J., Olson, S., Obradovic, A., Balogh, B., King, P. (2002). Integrated Management of Bacterial Spot on Tomato in Florida: PP110/PP110. doi.org/10.32473/edis-pp110-2002 [DOI:10.32473/edis-pp110-2002]
49. Munsch, P., Olivier, J. (1995). Biocontrol of bacterial blotch of the cultivated mushroom with lytic phages: some practical considerations.in: Elliot(ed.),science and gultivation of edible fungi. balkema, rotterdam,pp.595-602.
50. Munsch P, Oliver JM, Houdeau G. Experimental control of bacterial blotch by bacteriophages. In: Maher MJ, editor. Science and cultivation of edible fungi. Balkema, Rotterdam, Netherlands: 1991. pp. 389-396.
51. Nations, U. (2015). World population prospects: The 2015 revision. United Nations Econ Soc Aff, 33 (2), 1-66.
52. Nikolic, T. V., Kojic, D., Orcic, S., Vukasinovic, E. L., Blagojevic, D. P., Purac, J. (2019). Laboratory bioassays on the response of honey bee (Apis mellifera L.) glutathione S-transferase and acetylcholinesterase to the oral exposure to copper, cadmium, and lead. Environmental Science and Pollution Research, 26, 6890-6897. doi.org/10.1007/s11356-018-3950-6 [DOI:10.1007/s11356-018-3950-6] [PMID]
53. Noohpisheh, Z., Amiri, H., Farhadi, S., Mohammadi-Gholami, A. (2020). Green synthesis of Ag-ZnO nanocomposites using Trigonella foenum-graecum leaf extract and their antibacterial, antifungal, antioxidant and photocatalytic properties. Spectrochimica Acta Part A: Mol Biomol Spectrosc, 240, 118595. doi.org/10.1016/j.saa.2020.118595 [DOI:10.1016/j.saa.2020.118595] [PMID]
54. Obradovic, A., Jones, J. B., Momol, M., Balogh, B., Olson, S. (2004). Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Disease, 88 (7), 736-740. doi.org/10.1094/PDIS.2004.88.7.736 [DOI:10.1094/PDIS.2004.88.7.736] [PMID]
55. Obradovic, A., Jones, J. B., Momol, M., Olson, S., Jackson, L., Balogh, B., Guven, K., Iriarte, F. (2005). Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease, 89 (7), 712-716. doi.org/ 10.1094/PD-89-0712 [DOI:10.1094/PD-89-0712] [PMID]
56. Oerke, E.-C., Mahlein, A.-K., Steiner, U. (2014). Proximal sensing of plant diseases. Detection and diagnostics of plant pathogens, 55-68. doi.org/ 10.1007/978-94-017-9020-8_4 [DOI:10.1007/978-94-017-9020-8_4]
57. Pazhouhnia, S., Bouzari, M., Arbabzadeh-Zavareh, F. (2022). Isolation, characterization and complete genome analysis of a novel bacteriophage vB_EfaS-SRH2 against Enterococcus faecalis isolated from periodontitis patients. Scientific reports, 12 (1), 13268. doi.org/10.1038/s41598-022-16939-0 [DOI:10.1038/s41598-022-16939-0] [PMID] []
58. Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J., Lu, T. K. (2016). Genetically engineered phages: a review of advances over the last decade. Microbiology and Molecular Biology Reviews, 80 (3), 523-543. doi.org/10.1128/MMBR.00069-15. [DOI:10.1128/MMBR.00069-15] [PMID] []
59. Polizzi, G., Dimartino, M., Bella, P., Catara, V. (2008). First report of leaf spot and blight caused by Ralstonia pickettii on bird of paradise tree in Italy. Plant Disease, 92 (5), 835-83. doi.org/ 10.1094/PDIS-92-5-0835A. [DOI:10.1094/PDIS-92-5-0835A] [PMID]
60. Poplawsky, A., Urban, S., Chun, W. (2000). Biological role of Xanthomonadin pigments in Xanthomonas campestris pv. campestris. Applied and environmental microbiology, 66 (12), 5123-5127. doi.org/10.1128/aem.66.12.5123-5127.2000 [DOI:10.1128/AEM.66.12.5123-5127.2000] [PMID] []
61. Ray, D. K., Mueller, N. D., West, P. C., Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one, 8 (6), e66428. doi.org/10.1371/journal.pone.0066428 [DOI:10.1371/journal.pone.0066428] [PMID] []
62. Richard, D., Tribot, N., Boyer, C., Terville, M., Boyer, K., Javegny, S., Roux-Cuvelier, M., Pruvost, O., Moreau, A., Chabirand, A. (2017). First report of copper-resistant Xanthomonas citri pv. citri pathotype A causing Asiatic citrus canker in Ré:union:, France. Plant Disease, 101 (3), 503. doi.org/10.1094/PDIS-09-16-1387-PDN [DOI:10.1094/PDIS-09-16-1387-PDN]
63. Sabzali, S., Bouzari, M. (2021). Isolation, identification and some characteristics of two lytic bacteriophages against Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium from various food sources. FEMS Microbiology Letters, 368 (7), fnab037. doi.org/10.1093/femsle/fnab037. [DOI:10.1093/femsle/fnab037] [PMID]
64. Saccardi, A., Gambin, E., Zaccardelli, M., Barone, G., Mazzucchi, U. (1993). Xanthomonas campestris pv. pruni control trials with phage treatments on peaches in the orchard. Phytopathologia Mediterranea, 206-210.
65. Safni, I., Subandiyah, S., Fegan, M. (2018). Ecology, epidemiology and disease management of Ralstonia syzygii in Indonesia. Frontiers in Microbiology, 9, 419. doi.org/10.3389/fmicb.2018.00419 [DOI:10.3389/fmicb.2018.00419] [PMID] []
66. Sakata, N., Ishiga, T., Masuo, S., Hashimoto, Y., Ishiga, Y. (2021). Coronatine contributes to Pseudomonas cannabina pv. alisalensis virulence by overcoming both stomatal and apoplastic defenses in dicot and monocot plants. Molecular Plant-Microbe Interactions, 34(7), 746-757. doi.org/10.1094/MPMI-09-20-0261-R. [DOI:10.1094/MPMI-09-20-0261-R] [PMID]
67. Sasaki, R., Miyashita, S., Ando, S., Ito, K., Fukuhara, T., Takahashi, H. (2021). Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases. Viruses, 13(4), 591. doi.org/10.3390/v13040591 [DOI:10.3390/v13040591] [PMID] []
68. Schnabel, E., Fernando, W., Meyer, M., Jones, A., Jackson, L. (1998). Bacteriophage of Erwinia amylovora and their potential for biocontrol. VIII International Workshop on Fire Blight 489. doi.org/10.17660/ActaHortic.1999.489.116 [DOI:10.17660/ActaHortic.1999.489.116]
69. Strange, R. N., Scott, P. R. (2005). Plant disease: a threat to global food security. Annu. Rev. Phytopathol., 43, 83-116. doi.org/10.1146/annurev.phyto.43.113004.133839. [DOI:10.1146/annurev.phyto.43.113004.133839] [PMID]
70. Subbarao, K. V., Sundin, G. W., Klosterman, S. J. (2015). Focus issue articles on emerging and re-emerging plant diseases. Phytopathology, 105(7), 852-854. doi.org/10.1094/PHYTO-105-7-0001 [DOI:10.1094/PHYTO-105-7-0001]
71. Sundin, G. W., Wang, N. (2018). Antibiotic resistance in plant-pathogenic bacteria. Annual Review of phytopathology, 56, 161-180. doi.org/10.1146/annurev-phyto-080417-045946 [DOI:10.1146/annurev-phyto-080417-045946] [PMID]
72. Thayer, P., Stall, R. (1962). The survey of Xanthomonas vesicatoria resistance to streptomycin. Florida online journal, 75, 733-736.
73. Timilsina, S., Potnis, N., Newberry, E. A., Liyanapathiranage, P., Iruegas-Bocardo, F., White, F. F., Goss, E. M., Jones, J. B. (2020). Xanthomonas diversity, virulence and plant-pathogen interactions. Nature Reviews Microbiology, 18 (8), 415-427. doi.org/ 10.1038/s41579-020-0361-8 [DOI:10.1038/s41579-020-0361-8] [PMID]
74. Toth, I. K., Barny, M.-a., Brurberg, M. B., Condemine, G., Czajkowski, R., Elphinstone, J. G., Helias, V., Johnson, S. B., Moleleki, L. N., Pirhonen, M. (2021). Pectobacterium and Dickeya: environment to disease development. Plant diseases caused by Dickeya and Pectobacterium Species, 39-84. doi.org/ 10.1007/978-3-030-61459-1_3 [DOI:10.1007/978-3-030-61459-1_3]
75. Vu, N.T., Oh, C.S. (2020). Bacteriophage usage for bacterial disease management and diagnosis in plants. The Plant Pathology Journal, 36 (3), 204. doi.org/10.5423/PPJ.RW.04.2020.0074 [DOI:10.5423/PPJ.RW.04.2020.0074] [PMID] []
76. Xu, J., Xiang, Y. (2017). Membrane penetration by bacterial viruses. Journal of virology, 91(13), 10.1128/jvi. 00162-00117. doi.org/10.1128/JVI.00162-17 [DOI:10.1128/JVI.00162-17] [PMID] []
77. Zaer Anaqz, Z., Khakvar, R., Mohammadi, S.A., Benazadeh Baghi, H. (2023). Isolation and characterization of bacteriophages infecting Pseudomonas syringae pv. syringae, and evaluating their biological control efficiency. Genetic Engineering and Biosafety Journal, 11 (2), 253-265. doi.org/20.1001.1.25885073.1401.11.2.12.1
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabzali S, Pazhouhnia S, Amiri H. Bacteriophages are the new plant disease treatment agents. gebsj 2024; 13 (1) :74-85
URL: http://gebsj.ir/article-1-491-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 1 (5-2024) Back to browse issues page
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4700