[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 1 (5-2024) ::
gebsj 2024, 13(1): 51-62 Back to browse issues page
Effects of a tripartite interaction among ToMV, tomato and Glomus fasciculatum
Hossein Sedaghatian , Reza Almasi * , Samira Pakbaz , Vahid Roumi
Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran , ralmasi@malayeru.ac.ir
Abstract:   (603 Views)
Arbuscular Mycorrhizal Fungi (AMF) as root symbionts in most terrestrial plants, not only improve nutrition, but also increase plant resistance to biotic and abiotic stresses by changing the physiology of the host plant. Viruses are one of the most important pathogens and limiting factors in plant production. The effects of AMF on viral infections are contradictory. Some AMFs lead to resistance to viral infection, while others result in increased susceptibility of the host plant. In this research, the effect of the symbiosis between tomato plants and the arbuscular mycorrhiza, Glomus fasciculatum (GF), was investigated in response to tomato mosaic virus infection. The plant responses were investigated in various characteristics such as plant height, fresh and dry weights of aerial parts, disease severity, content of total phenols and photosynthetic pigments, content of nitrogen, phosphorus and potassium elements, and the activity of antioxidant enzymes. The results showed that the AMF delayed the emergence of the symptoms and reduced disease severity. Additionally, AMF caused significant increases in growth traits in both virus- and mock-inoculated plants. AMF enhanced the content of the photosynthetic pigments in mock-inoculated plants, but in the virus-inoculated plants, it could not significantly increase chlorophyll b. Virus and mycorrhizal infections, alone and simultaneously, resulted in a significant increase in catalase and peroxidase activities and total phenolic content in the plants. AMF significantly increased the content of nitrogen, phosphorus and potassium in mock-inoculated plants. However, no significant increase was seen in the case of phosphorus in virus-infected plants. In general, it can be concluded that the symbiosis of tomato-GF has led to resistance to tomato mosaic virus infection.
Keywords: Defence-related compounds, disease severity, chlorophyll, mineral elements, symbiosis
Full-Text [PDF 836 kb]   (157 Downloads)    
Type of Study: Research | Subject: Divers
Received: 2024/05/12 | Accepted: 2024/09/17 | Published: 2024/09/18
References
1. Alazem, M., & Lin, N. S. (2015). Roles of plant hormones in the regulation of host-virus interactions. Molecular Plant Pathology, 16, 529-540. doi: 10.1111/mpp.12204. [DOI:10.1111/mpp.12204]
2. Ara, I, Bukhari, N.A., Aref, N. M., Shinwari, M.M.A., & Bakir, M.A. (2012). Antiviral activities of streptomycetes against tobacco mosaic virus (TMV) in Datura plant: evaluation of different organic compounds in their metabolites. African Journal of Biotechnology, 11, 2130-2138. doi.org/10.5897/AJB11.3388 [DOI:10.5897/AJB11.3388]
3. Auge, R., Toler, H., & Saxton, A. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza, 25, 13-24. doi: 10.1007/s00572-014-0585-4 [DOI:10.1007/s00572-014-0585-4]
4. Balestrini, R., Brunetti, C., Chitarra, W., & Nerva, L. (2020). Photosynthetic traits and nitrogen uptake in crops: which is the role of arbuscular mycorrhizal fungi? Plants, 9(9), 1105. doi.org/10.3390/plants9091105 [DOI:10.3390/plants9091105]
5. Balogun, O. S. (2008). Seedlings age at inoculation and infection sequence affect disease and growth responses in tomato mixed infected with Potato virus X and Tomato mosaic virus. International Journal of Agriculture and Biology, 10, 145-150.
6. Bennett, A. E., & Groten, K. (2022). The costs and benefits of plant-arbuscular mycorrhizal fungal interactions. Annual Review of Plant Biology, 73, 649-672. doi: 10.1146/annurev-arplant-102820-124504. [DOI:10.1146/annurev-arplant-102820-124504]
7. Bonfante, P., & Desirò, A. (2017). Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J., 11, 1727-1735. doi: 10.1038/ismej.2017.21 [DOI:10.1038/ismej.2017.21]
8. Bremner, J.M., & Mulvancy, C.S. (1982). Nitrogen Total pp. 595-624. In: A., Klute (Ed), Methods of soil Analysis-part 2, Agron. Monogr. No. 9. American Society of Agronomy, Madison, WI. doi.org/10.2134/agronmonogr9.2.2ed.c31 [DOI:10.2134/agronmonogr9.2.2ed.c31]
9. Cameron, D.D., Neal, A.L., van Wees, S.C., & Ton, J. (2013). Mycorrhizainduced resistance: more than the sum of its parts? Trends in Plant Science, 18, 539-545. doi: 10.1016/j.tplants.2013.06.004 [DOI:10.1016/j.tplants.2013.06.004]
10. Chandrasekaran, M., Chanratana, M., Kim, K., Seshadri, S., & Sa, T. (2019). Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress-a meta-analysis. Frontiers in Plant Science, 10, 457. doi.org/10.3389/fpls.2019.00457 [DOI:10.3389/fpls.2019.00457]
11. Chen, j., Zhang, H., Zhang, X., & Tang, M. (2020). Arbuscular mycorrhizal symbiosis mitigates oxidative injury in black locust under salt stress through modulating antioxidant defence of the plant. Environmental and Experimental Botany, 175, 104034. doi.org/10.1016/j.envexpbot.2020.104034 [DOI:10.1016/j.envexpbot.2020.104034]
12. Chen, S., Gu, H., Wang, X., Chen, J., & Zhu, W. (2011). Multiplex RT-PCR detection of Cucumber mosaic virus subgroups and Tobamoviruses infecting Tomato using 18S rRNA as an internal control, Acta Biochimica et Biophysica Sinica, 43(6), 465-471. doi.org/10.1093/abbs/gmr031. [DOI:10.1093/abbs/gmr031]
13. Culver, J., & Padmanabhan, M. (2007). Virus-induced disease: Altering host physiology one interaction at a time. Annual Review of Phytopathology, 45, 221-243. doi.org/10.1146/annurev.phyto.45.062806.094422 [DOI:10.1146/annurev.phyto.45.062806.094422]
14. Dhiman, M., Sharma, L., Kaushik, P., Singh, A., & Sharma, M.M. (2022). Mycorrhiza: An ecofriendly bio-tool for better survival of plants in nature. Sustainability, 14, 10220. doi.org/10.3390/su141610220 [DOI:10.3390/su141610220]
15. Dhindsa, R.S., & Motowe, W. (1981). Drought tolerance in two mosses: correlation with enzymatic defense against lipid peroxidation. Journal of Experimental Botany, 32, 79-91. doi.org/10.1093/jxb/32.1.79 [DOI:10.1093/jxb/32.1.79]
16. Duc, N.H., Vo, A.T., Haddidi, I., Daood, H., & Posta, K. (2020). Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata and induce major changes in polyphenol profiles under salt stresses. Frontiers in Plant Science, 11, 612299. doi.org/10.3389/fpls.2020.612299 [DOI:10.3389/fpls.2020.612299]
17. Elsharkawy, M.M., El-Okkiah, S., Elsadany, A.Y., Bedier, M.Y., Omara, R.I., Behiry, S.I., Hassan, S., & Abdelkhalek, A. (2022). Systemic resistance induction of tomato plants against tomato mosaic virus by microalgae. Egyptian Journal of Biological Pest Control, 32, 37. doi.org/10.1186/s41938-022-00538-2. [DOI:10.1186/s41938-022-00538-2]
18. Fattahi, B., Almasi, R., & Ghasemi Hajiabadi, F. (2022). Changes of morphological characteristics and nutrients of Bromus tomentellus under the influence of coexistence with mycorrhiza fungi for use in range seeding operation. Journal of Rangeland, 15, 665-676. dorl.net/dor/20.1001.1.20080891.1400.15.4.7.8 (In Farsi with English abstract).
19. Fiorilli, V., Vannini, C., Ortolani, F., Garcia-Seco, D., Chiapello, M., & Novero, M. (2018). Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Scientific Reports, 8, 9625. doi: 10.1038/s41598-018-27622-8 [DOI:10.1038/s41598-018-27622-8]
20. French, K.E. (2017). Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. Frontiers in Microbiology, 8, 1403. 10.3389/fmicb.2017.01403. [DOI:10.3389/fmicb.2017.01403]
21. Hao, Z., Xie, W., & Chen, B. (2019). Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses, 11, 534. doi:10.3390/v11060534 [DOI:10.3390/v11060534]
22. He, J. D., Zou, Y. N., Wu, Q. S., & Kuča, K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 262, 108745. doi.org/10.1016/j.scienta.2019.108745 [DOI:10.1016/j.scienta.2019.108745]
23. Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., & Pozo, M.J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 3(8), 651-664. doi.org/10.1007/s10886-012-0134-6 [DOI:10.1007/s10886-012-0134-6]
24. Knudsen, D., Peterson, G. A., & Pratt, P. E. (1982). Lithium, sodium and potassium. pp. 225-246. In: A. L. page (Ed.), Methods of Soil Analysis-Part 2, Agron. Monogr. No 9, American Society of Agronomy, Madison, WI. doi.org/10.2134/agronmonogr9.2.2ed.c13 [DOI:10.2134/agronmonogr9.2.2ed.c13]
25. Kumar, S., Udaya Shankar, A. C., Nayaka, S. C., Lund, O. S., & Prakash, H. S. (2011). Detection of tobacco mosaic virus and tomato mosaic virus in pepper and tomato by multiplex RT-PCR. Letters in Applied Microbiology, 53, 359-363. doi: 10.1111/j.1472-765X.2011.03117.x. [DOI:10.1111/j.1472-765X.2011.03117.x]
26. Luck, H. (1974). Catalase. In: Bergmeyer, H.U., Ed., Method of Enzymatic Analysis, Academic Press, New York and London, 885-894. dx.doi.org/10.1016/B978-0-12-395630-9.50158-4
27. Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485-512. doi: 10.1146/annurev-arplant-042916-041132. [DOI:10.1146/annurev-arplant-042916-041132]
28. McDonald, S., Prenzler, P. D., Autolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84. doi.org/10.1016/S0308-8146(00)00288-0 [DOI:10.1016/S0308-8146(00)00288-0]
29. Miozzi, L., Catoni, M., Fiorilli, V., Mullineaux, P. M., Accotto, G.P., & Lanfranco, L. (2011). Arbuscular mycorrhizal symbiosis limits foliar transcriptional responses to viral infection and favors long-term virus accumulation. Molecular Plant-Microbe Interaction, 24, 1562-1572. doi: 10.1094/MPMI-05-11-0116 [DOI:10.1094/MPMI-05-11-0116]
30. Miozzi, L., Vaira, A. M., Brilli, F., Casarin, V., Berti, M., Ferrandino, A., Nerva, L., Accotto, G. P., & Lanfranco, L. (2020). Arbuscular mycorrhizal symbiosis primes tolerance to Cucumber mosaic virus in tomato. Viruses, 12, 675. doi:10.3390/v12060675 [DOI:10.3390/v12060675]
31. Miozzi, L., Vaira, A. M., Catoni, M., Fiorilli, V., Accotto, G. P., & Lanfranco, L. (2019). Arbuscular mycorrhizal symbiosis plant friend or foe in the fight against viruses. Frontiers in Microbiology, 10, 1238. doi: 10.3389/fmicb.2019.01238 [DOI:10.3389/fmicb.2019.01238]
32. Moarrefzadeh, N., & Khateri, H. (2022). Biological control of Ascochyta blight and improvement of chickpea growth parameters by the application of arbuscular mycorrhiza and plant growth promoting rhizobacteria. gebsj, 11(2), 1. dorl.net/dor/20.1001.1.25885073.1401.11.2.14.3 (In Farsi with English abstract).
33. Moran, R. (1982). Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Journal of Plant Physiology, 69(6), 1376-1381. [DOI:10.1104/pp.69.6.1376]
34. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. doi.org/10.1093/oxfordjournals.pcp.a076232
35. Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. pp. 403-430. In: A. L. page (Ed.), Methods of Soil Analysis-Part 2, Agron. Monogr. No 9, American Society of Agronomy, Madison, WI. doi.org/10.2134/agronmonogr9.2.2ed.c24 [DOI:10.2134/agronmonogr9.2.2ed.c24]
36. Pons, S., Fournier, S., Chervin, C., Bécard, G., Rochange, S., Frey, N. F. D., & Pages, V. P. (2020). Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLOS ONE, 15(10), e0240886. doi.org/10.1371/journal.pone.0240886 [DOI:10.1371/journal.pone.0240886]
37. Pozo, M. J., & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10, 393-398. doi: 10.1016/j.pbi.2007.05.004 [DOI:10.1016/j.pbi.2007.05.004]
38. Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., & Kloepper, J. W. (1996). Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Disease, 80, 91-894. doi.org/10.1094/PD-80-0891 [DOI:10.1094/PD-80-0891]
39. Shaul, O., Galili, S., Volpin, H., Ginzberg, I., Elad, Y., Chet, I., & Kapulmik, Y. (1999). Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Molecular Plant Microbe Interaction, 12, 1000-1007. doi: 10.1094/mpmi.1999.12.11.1000 [DOI:10.1094/MPMI.1999.12.11.1000]
40. Shirali, F., Almasi, R., & Fattahi, B. (2020). Effects of symbiosis with two species of arbuscular mycorrhiza on some morphological and physiological characteristics of rangeland grass, Agropyron elongatum (Host). Beauv. Journal of Rangeland, 14, 731-741. dorl.net/dor/20.1001.1.20080891.1399.14.4.13.7 (In Farsi with English abstract).
41. Sipahioglu, M. H., Demir, S., Usta, M., & Akkopru, A. (2009). Biological relationship of potato virus Y and arbuscular mycorrhizal fangus Glomus intraradices in potato. Pest Technology, 3, 63-66.
42. Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250. doi.org/10.1146/annurev-arplant-042110-103846 [DOI:10.1146/annurev-arplant-042110-103846]
43. Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., & Berbee, M. L. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genomescale data. Mycologia, 108, 1028-1046. doi: 10.3852/16-042 [DOI:10.3852/16-042]
44. Tripathi, R., Tewari, R., Singh, K. P., Keswani, C., Mikina, T., Srivastana, A. K., De Corato, U., & Sansinenea, E. (2022). Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Frontiers in Plant Science, 13, 883970. doi: 10.3389/fpls.2022.883970 [DOI:10.3389/fpls.2022.883970]
45. Turina, M., Ghignone, S., Astolfi, N., Silvestri, A., Bonfante, P., & Lanfranco, L. (2018). The virome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals the first report of DNA fragments corresponding to replicating non-retroviral RNA viruses in fungi. Environmental Microbiology, 20, 2012-2025. doi: 10.1111/1462-2920.14060 [DOI:10.1111/1462-2920.14060]
46. Wang, L., Jia, X., Zhao, Y., Zhang, C. Y., & Zhao, J. (2022). Effect of arbuscular mycorrhizal fungi in roots on antioxidant enzyme activity in leaves of Robinia pseudoacacia L. seedlings under elevated CO2 and Cd exposure. Environmental Pollution, 294, 118652. doi.org/10.1016/j.envpol.2021.118652 [DOI:10.1016/j.envpol.2021.118652]
47. Whipps, J. M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82, 1198-1227. doi: 10.1139/b04-082 [DOI:10.1139/b04-082]
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sedaghatian H, Almasi R, Pakbaz S, Roumi V. Effects of a tripartite interaction among ToMV, tomato and Glomus fasciculatum. gebsj 2024; 13 (1) :51-62
URL: http://gebsj.ir/article-1-492-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 1 (5-2024) Back to browse issues page
دوفصل نامه علمی-پژوهشی مهندسی ژنتیک و ایمنی زیستی Genetic Engineering and Biosafety Journal
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4710